

This project has received funding from the European Union’s 7th Framework Programme for Research, Technological Development and
Demonstration under Grant Agreement (GA) N° #607798

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 2 of 52

Project information

Project Acronym: DRIVER+

Project Full Title: Driving Innovation in Crisis Management for European Resilience

Grant Agreement: 607798

Project Duration: 72 months (May 2014 - April 2020)

Project Technical Coordinator: TNO

Contact: coordination@projectdriver.eu

Deliverable information

Deliverable Status: Final

Deliverable Title: D923.11 - Functional specification of the Test-bed infrastructure

Deliverable Nature: Report (R)

Dissemination Level: Public (PU)

Due Date: March 2018 (M47)

Submission Date: 03/04/2018

Sub-Project (SP): SP92 - Test-bed

Work Package (WP): WP923 – Test-bed Infrastructure

Deliverable Leader: XVR Simulation

Reviewers: Hector Naranjo – GMV, Michael Middelhoff – WWU, Angela Schmitt – DLR,
Marcel van Berlo - TNO

File Name: DRIVER+_D923.11_Functional Specification of the Test-bed.docx

DISCLAIMER

The opinion stated in this report reflects the opinion of the authors and not the opinion of the European Commission.

All intellectual property rights are owned by the DRIVER+ consortium members and are protected by the applicable
laws. Except where otherwise specified, all document contents are: “©DRIVER+ Project - All rights reserved”.
Reproduction is not authorised without prior written agreement.

The commercial use of any information contained in this document may require a license from the owner of that
information.

All DRIVER+ consortium members are also committed to publish accurate and up to date information and take the
greatest care to do so. However, the DRIVER+ consortium members cannot accept liability for any inaccuracies or
omissions nor do they accept liability for any direct, indirect, special, consequential or other losses or damages of any
kind arising out of the use of this information.

mailto:coordination@projectdriver.eu

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 3 of 52

Revision Table

Issue Date Comment Author

V0.1 08/11/2017 Initial draft Steven van Campen, XVR
Sub-Task Leader 923.1.2

V0.2 20/11/2017 Split in multiple documents, this one
being the main, high-over specifications
document. And all specs documentation
done in GitHub.

Steven van Campen, XVR
Chiara Fioni, JRC
Erik Vullings, TNO

V0.3 23/03/2018 Version published and reviewed on
GitBook

Steven van Campen, XVR
Erik Vullings, TNO
Martijn Hendriks, XVR
Joaquin Marquez-Bugella, FRQ
Cyril Dangerville, TS
Hector Naranjo, GMV
Michael Middelhoff, WWU
Angela Schmitt, DLR
Chiara Fonio, JRC

V0.4 26/03/2018 GitBook version transferred to Word file Steven van Campen, XVR

V0.5 28/03/2018 Included final comments by JRC and
GMV

Steven van Campen, XVR
Chiara Fonio, JRC
Hector Naranjo, GMV
Marcel van Berlo, TNO

V0.6 30/03/2018 Final draft approved Steven van Campen, XVR
Marcel van Berlo, TNO

V0.7 03/04/2018 Final check and approval for submission Peter Petiet, Project Director, TNO

V1.0 03/04/2018 Final check and submission to the EC Francisco Gala, ATOS

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 4 of 52

Current and future challenges due to increasingly severe consequences of natural disasters and terrorist
threats require the development and uptake of innovative solutions that are addressing the operational
needs of practitioners dealing with Crisis Management. DRIVER+ (Driving Innovation in Crisis Management
for European Resilience) is a FP7 Crisis Management demonstration project aiming at improving the way
capability development and innovation management is tackled. DRIVER+ has three main objectives:

1. Develop a pan-European Test-bed for Crisis Management capability development:

- Develop a common guidance methodology and tool (supporting Trials and the gathering of lessons
learned.

- Develop an infrastructure to create relevant environments, for enabling the trialling of new solutions
and to explore and share CM capabilities.

- Run Trials in order to assess the value of solutions addressing specific needs using guidance and
infrastructure.

- Ensure the sustainability of the pan-European Test-bed.

2. Develop a well-balanced comprehensive Portfolio of Crisis Management Solutions:

- Facilitate the usage of the Portfolio of Solutions.

- Ensure the sustainability of the Portfolio of Solutions.

3. Facilitate a shared understanding of Crisis Management across Europe:

- Establish a common background.
- Cooperate with external partners in joint Trials.
- Disseminate project results.

In order to achieve these objectives, five Subprojects (SPs) have been established. SP91 Project Management
is devoted to consortium level project management, and it is also in charge of the alignment of DRIVER+ with
external initiatives on crisis management for the benefit of DRIVER+ and its stakeholders. In DRIVER+, all
activities related to Societal Impact Assessment (from the former SP8 and SP9) are part of SP91 as well. SP92
Test-bed will deliver a Guidance methodology and guidance tool supporting the design, conduct and analysis
of Trials and will develop a reference implementation of the Test-bed. It will also create the scenario
simulation capability to support execution of the Trials. SP93 Solutions will deliver the Portfolio of Solutions
(PoS) which is a database driven web site that documents all the available DRIVER+ solutions, as well as
solutions from external organizations. Adapting solutions to fit the needs addressed in Trials, will be done in
SP93. SP94 Trials will organize four series of Trials as well as the final demo. SP95 Impact, Engagement and
Sustainability, is in charge of communication and dissemination, and also addresses issues related to
improving sustainability, market aspects of solutions, and standardization.

The DRIVER+ Trials and the Final Demonstration will benefit from the DRIVER+ Test-bed, providing the
technological infrastructure, the necessary supporting methodology and adequate support tools to prepare,
conduct and evaluate the Trials. All results from the trails will be stored and made available in the Portfolio
of Solutions, being a central platform to present innovative solutions from consortium partners and third
parties and to share experiences and best practices with respect to their application. In order to enhance the
current European cooperation framework within the Crisis Management domain and to facilitate a shared
understanding of Crisis Management across Europe, DRIVER+ will carry out a wide range of activities, whose
most important will be to build and structure a dedicated Community of Practice in Crisis Management,
thereby connecting and fostering the exchange on lessons learned and best practices between Crisis
Management practitioners as well as technological solution providers.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 5 of 52

This deliverable provides the requirements specifications – meaning both must-do requirements and
should/could-do wishes - of the to-be-developed Test-bed within the DRIVER+ project (D+). This Test-bed
consists of software components intended to support Trials, which are systematic tests of Crisis Management
(CM) solutions in realistic but non-operational (fictive) contexts. Solutions are any type of
tool/product/procedure (e.g. a software package, a training method or a new standard operating procedure)
that is intended to support/improve Crisis Management. The purpose of conducting Trials in DRIVER+ is to
find out if and how some innovative solutions can help resolve the needs of the CM practitioners, before
adopting these solutions.

The development of the Test-bed is done within WP923. The Test-bed and its development are:

• Linked to the design and evaluation of the Trial Guidance Methodology in WP922.

• Explained in the Training Module in T924.1.

• Described in the Portfolio of Solutions, developed in WP93.

• Used in the Trials of SP94.

• Made available open-source to support the sustainability of DRIVER+ results in WP954.

The Test-bed will be delivered in 3 versions. Version 1 is intended for use in Trials 1 and 2, and consists of a
limited number of components (i.e. Scenario Manager and AAR not included and other components in first
prototype quality). Version 2 is to be used in Trials 3 and 4 and the Final Demo and comes with all components
with a quality level surpassing that of a first prototype. It should contain data-sets and basic scenarios that
can be used for effectively implementing and testing the Test-bed. The final version, Version 3, should have
an even better quality based on experiences gathered from the use of the Test-bed in the executed Trials
and is made available open-source on GitHub.

This deliverable is available as living document on the online, open-source document-sharing platform
GitBook1, such that it can be updated when development and use of the Test-bed progresses and to open up
these specifications to anyone outside DRIVER+. This document describes what the Test-bed must/should
be. How these requirements and wishes are implemented is documented in Deliverables D923.21, D923.22
and D923.23 - Reference Implementations of the Test-bed (versions 1/2/3 resp.).

The documented specifications are based on lessons learned from experiments done in the former phase of
the project, use-case analysis, experiences from development partners in other projects, market analysis into
comparable components and consulting DRIVER+ Trial organizers and Solution providers. The specifications
drafting process runs in parallel with the design and development process of the Test-bed’s components such
that both processes can influence each other positively in a quick and agile manner.

The following lessons were learned from the use of previous Test-beds in the former DRIVER experiments:

• A generic Trial Guidance Methodology is needed for analysing the need, and preparing, executing
and reviewing a Trial.

• Only one Test-bed must be created and this must be used for each and every Trial.

• The Test-bed should be open source.

• The Test-bed should have a message-oriented architecture.

• The Test-bed should use well-defined, easily accessible, syntactically correct messages, and close to
common standards.

• The Test-bed should be clearly defined and scoped, i.e. what it is, and what it is not.

1 driver-eu.gitbooks.io/test-bed-specification/content/ [1]

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 6 of 52

The Test-bed must be easily reproducible, and offer administrative as well as supporting tools and services.

Figure Sum.1: Positioning of the Test-bed

As depicted in Figure Sum.1, the Test-bed will be used in the following environment:

• Participants are using the Solutions to solve a fictive crisis. Data-integration between these solutions
flows via the Test-bed.

• This fictive, virtual crisis exists in a virtual world created by a set of Simulators (e.g. computer-based
simulators, or a fire brigade’s physical exercise terrain, or a combination of both). Data-integration
between the simulators flows via the Test-bed.

• The Trial Staff, supported by the Trial Guidance Methodology and the Training Module, uses the
Test-bed during the:

o Preparation-phase – to build the scenario and set-up and test all solutions and simulators
required.

o Execution-phase – to control how the virtual crisis scenario evolves, observe the Participants
and gather data-logs from both the solutions and the virtual crisis.

o Evaluation-phase – to gather and analyse all observations, recordings and data-logs, and
base an evidence-based evaluation report on these.

• The Test-bed, solutions and simulators are available at the Platform (i.e. one or more locations),
which provides rooms/areas for Participants to execute CM operations and rooms/areas for the Trial
Staff. The Platform can be a simulation centre like available in The Hague, but can also be a live
exercise terrain.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 7 of 52

Figure Sum.2: All components available within the Test-bed

To support this use, the Test-bed must consist of the following components (see Figure Sum.2):

• The Common Information Space (CIS) is a central messaging bus with standardized CIS Adapters to
connect solutions to the Test-bed.

• The Common Simulation Space (CSS) is a similar central messaging bus with standardized CSS
Adapters to connect simulators to the Test-bed.

• The CIS and CSS are interlinked via one or more Gateways to feed solutions with data from the
simulated crisis (e.g. positions of virtual police cars driving around in the fictive region) and to pass
through changes inputted via one or more solutions to the simulators (e.g. a command to block off
an area). A Validation Service can be added to safeguard messages are correctly filled and
understandable by the counterpart.

• Both the CIS and the CSS are controlled via the Test-bed Admin Tool. This provides an interface for
Trial Staff to control which solutions and simulators are to be started and which data is (not)
exchanged.

• The Trial Scenario Manager and the Time Service components provide functionality and an interface
for Trial Staff to create a high-over timeline of the Trial Scenario with Injects (in the preparation-
phase), activate these Injects if needed (in the execution-phase) and control the fictive time clock (in
the execution-phase, meaning starting the Trial, pausing the fictive clock, fast-forwarding, jumping
back in fictive time and stopping the Trial).

• The Observer Support Tool (OST) provides a module to prepare, make and gather observations.

• The After Action Review (AAR) module gathers in execution-phase data-logs, observations and
(screen-) recordings, such that these can be reviewed.

For development and implementation purposes, the Test-bed should also come with:

• A Message Injector to input specific, single messages to test whether these messages are correctly
received by another component.

• A Play Service to input several messages in chronological order.

• Data Server(s) to feed the simulators and potentially also the solutions with geo-specific information
and map-layers.

• A Docker Environment providing images (i.e. installers) of each component, such that the installation
of (a limited) Test-bed can be done quickly and transparently.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 8 of 52

Table of Contents

The DRIVER+ project .. 4

Executive summary ... 5

1. Introduction .. 13

1.1 Targeted reading audience ... 13

1.2 Online living document on GitBook .. 14

2. Work-process used to come up with the Test-bed’s specifications ... 15

3. Lessons learned on the Test-bed from the former DRIVER-project ... 18

3.1 Summary of the lessons learned ... 18

3.2 The organization of each experiment was ad hoc .. 18

3.3 Each Trial created its own Test-bed .. 18

3.4 Test-beds were not open source .. 19

3.5 All Test-beds used a message-oriented architecture .. 19

3.6 Each Test-bed used its own set of message standards ... 20

3.7 The definition of Test-bed was confusing ... 20

3.8 Test-bed management was complex .. 21

4. Aims of the Test-bed in DRIVER+ and high-over functional design .. 22

4.1 What the Test-bed should provide ... 22

4.2 Positioning of the Test-bed ... 25

4.3 High-level functional design .. 26

4.4 User-types and high-level use-cases ... 28

4.4.1 Use-modes ... 29

4.4.2 User-types .. 29

4.4.3 High-level use-case: Developing the Test-bed’s components ... 30

4.4.4 High-level use-case: Developing the connection of a solution/simulator....................... 30

4.4.5 High-level use-case: Set-up and testing of the Test-bed ... 31

4.4.6 High-level use-case: Starting-up the Test-bed .. 31

4.4.7 High-level use-case: Scenario creation .. 31

4.4.8 High-level use-case: Training (extra) Trial Staff and Participants 32

4.4.9 High-level use-case: Running a Trial session ... 32

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 9 of 52

4.4.10 High-level use-case: Evaluating a Trial .. 33

5. Summarized description per Test-bed component .. 34

5.1 Common Information Space (CIS) ... 34

5.1.1 Extra notes ... 34

5.2 Common Simulation Space (CSS) .. 35

5.2.1 Extra notes ... 35

5.3 CIS-CSS gateways ... 36

5.4 Validation Service .. 37

5.5 Test-bed manager (Admin tool) .. 37

5.6 Scenario Manager ... 38

5.7 Time service .. 38

5.8 Observer Support Tool .. 39

5.8.1 Extra notes ... 40

5.9 After-Action-Review (AAR) .. 41

5.10 Security Services .. 42

5.11 Play service .. 43

5.11.1 Extra notes .. 43

5.12 Message Injector ... 43

5.13 Data services .. 44

5.13.1 Extra notes .. 44

5.14 Docker-composer .. 44

6. Conclusions and way forward ... 46

6.1 Overall conclusions on the Test-bed’s requirements specifications ... 46

6.2 Envisioned development and implementation steps ... 46

6.3 Dependencies of the Test-bed’s development on other SPs and WPs ... 47

References ... 49

Annexes ... 51

Annex 1 – DRIVER+ Terminology ... 51

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 10 of 52

Figure Sum.1: Positioning of the Test-bed .. 6

Figure Sum.2: All components available within the Test-bed ... 7

Figure 2.1: The iterative process to set the DRIVER+ Test-bed specifications .. 15

Figure 4.1: The Test-bed in its environment ... 25

Figure 4.2: All components of the Test-bed .. 26

Table 4.1: Use-modes of the Test-bed .. 29

Table 4.2: User-types of the Test-bed ... 29

Table 5.1: Common Information Space ... 34

Table 5.2: Common Simulation Space ... 35

Table 5.3: CIS-CSS Gateways ... 36

Table 5.4: Validation Service ... 37

Table 5.5: Test-bed manager (Admin tool) ... 37

Table 5.6: Scenario Manager ... 38

Table 5.7: Time service .. 38

Table 5.8: Observer Support Tool (OST) .. 39

Table 5.9: After Action Review .. 41

Table 5.10: Security Services ... 42

Table 5.11: Play service ... 43

Table 5.12: Message Injector .. 43

Table 5.13: Data services ... 44

Table 5.14: Docker-composer ... 44

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 11 of 52

Acronym Definition

AAR After Action Review

AVRO Open data serialization system supported by the Apache Organization

CAP Common Alerting Protocol

CIS Common Information Space

CM Crisis Management

COP Common Operational Picture tools for creating a shared situational awareness

CoPCM Community of Practice in Crisis Management

COW Common Online Workspace

CSS Common Simulation Space

C# [C sharp] Programming Language

C++ [C plus plus] Programming Language

Docker
Container environment to enable independence between applications and
infrastructure

DOW Description Of Work

D[xxx] Deliverable number xxx

EDXL Emergency Disaster eXchange Language

EMSI Emergency Management Shared Information

FRQ Frequentis (DRIVER+ partner)

GitBook Open Source service for creating online books

GitHub Repository for managing DRIVER+’s software code

GT Guidance Tool

GUI Graphical User Interface

Java Programming Language

Kafka
An open source distributed streaming platform supported by the Apache
Organization that is used as the basis to exchange information between simulators
and solutions

KPI Key Performance Indicator

MBtiles Single file database format to store images of a map

MGT Management

OST Observer Support Tool

Python Programming Language

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 12 of 52

Acronym Definition

REST
Representational State Transfer (common interface allowing you to read and write
data from a service)

SP Sub-project

SUMO Simulation of Urban Mobility, a traffic and pedestrian simulator

TAP Trial Action Plan

TGM Trial Guidance Methodology

TCS Thales Services (DRIVER+ partner)

TypeScript Programming Language

WFS Web Feature Service (serving a map layer as vectors)

WMS Web Mapping Service (serving a map layer as picture)

WP Work package

XACML
eXtended Access Control Mark-up Language, a standard for describing security
permissions to resource

XML
eXtended Mark-up Language, a textual representation of a message that is easily
readable by computers

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 13 of 52

This document is intended to serve as functional requirements specifications for the DRIVER+ Test-bed,
meaning both requirements (must-dos) and wishes (should-dos) are listed. This Test-bed consists of software
components, developed within Work-Package 923 and intended to support Trials, which are systematic tests
of Crisis Management (CM) solutions in realistic but non-operational (fictive) contexts. Solutions are any type
of tool/product/procedure (e.g. a software package, a training method or a new standard operating
procedure) that is intended to support/improve Crisis Management. The purpose of conducting Trials in
DRIVER+ is to find out if and how innovative solutions can help resolve the needs of the CM practitioners,
before adopting these solutions.

This document is linked to D923.21, D923.22 and D923.23 that describe a reference implementation of the
released version of the Test-bed’s components, including design and development choices taken per
component. This document states the functional requirements for these components (i.e. what these
components must/should do and why this is needed). How these requirements are fulfilled and
design/development choices made during the component's development is documented in the Reference
Implementation documentation (D923.21, D923.22 and D923.23). Note that 3 versions of the Test-bed are
foreseen, each accompanied with its own Reference Implementation deliverable.

In the following chapters, this document provides:

• The lessons learned from test-beds developed and used in experiments in the former phase of the
project (chapter 3).

• The high-over use-cases of the entire, new, to-be-developed DRIVER+ Test-bed in the environment
it is used in, in the different phases of use and its different user-types (chapter 4).

• The functional specifications of this Test-bed and the components it therefore exists of (chapter 4
and chapter 5). The latter chapter also provides links for each component to separate, more detailed
specification documents of each component.

• The process how these specifications were drafted (chapter 2).

• What can be concluded from the functional specifications of the DRIVER+ Test-bed, the high-over
development cycle and the development dependencies of these Test-bed components with regards
to other WPs and SPs (chapter 6).

This document is targeted at readers who know the DRIVER+ objectives and project-contents at least at a
high-over level. They should also have a minimal level of understanding of software functional design.

Primary target audiences of this document are:

• Software designers, developers and testers creating a part of the Test-bed and/or wanting to use the
Test-bed.

• Trial Committee members (i.e. people involved in the organization of Trials within DRIVER+).

• DRIVER+ Trial Guidance Methodology (TGM) developers and those supporting the implementation
of this TGM (see D922.21 - Trial guidance methodology and guidance tool specifications (version 1)).

• DRIVER+ externals, who are interested in what the Test-bed can bring them.

Readers interested in how a specific component functions, the design and development choices made during
its development and the way to implement these components, are referred to the Reference Implementation
documentation per version of the Test-bed (i.e. D923.21, D923.22 and D923.23).

The core of this deliverable is an online version of it, published on GitBook.com. This online document is a
living document, which is updated throughout the development of the Test-bed. It is open to read by anyone.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 14 of 52

For editing and reviewing this document, a personal GitHub-account is required with which one can request
and be given access to the DRIVER+ GitHub group.

The documentation of the Test-bed’s functional specifications is completely done in the online developer
tool GitBook, a website linked to the popular developer community GitHub in which software code can be
created, shared and adjusted. GitBook is a website on which documents can be placed, read and adjusted.
For official delivery, a one-time offline copy is made, saved as .doc and .pdf files and delivered end of March
2018.

The decision to use GitBook for creating these functional specifications (i.e. instead of using MS Word for all
documentation for D923.11) is based on the considerations that:

GitHub and its affiliative GitBook is targeted specifically for software development

The overall majority of person-months allocated to the Test-bed’s development is in fact software
development.

Specifications are living documents

All the Test-bed’s specification documents are foreseen to be living documents to include progressing
knowledge on the Test-bed and practical considerations and decisions made during the development and
use of the Test-bed, like common in any software development project. This requires a documentation
process and tooling that can deal with these ongoing updates/changes to the specifications.

Parallel, agile development

GitHub and GitBook are developed specifically for parallel (agile) software development and for easy sharing
of documents and their updates amongst developers. In the agile software development method, multiple
developers work in parallel on the same/linked software components and the component’s specifications
are updated as development progresses immediately taking experiences gained in account. This principle of
the ability to update as work progresses is the reason to use a living document structure. GitBook is a well
proven documentation tool to create, share and update living documents.

Versioning and tracking

GitHub and GitBook contain an elaborate versioning and tracking system known by the overall majority of
European software developers, where the Track-changes and multiple simultaneous document update
functions as available in MS Word are less known to them.

Share open-source code on GitHub

GitHub is a platform to share software code and work on this code by multiple developers at different
locations. This sharing of code is required because:

• Different DRIVER+ partners from around Europe work on the Test-bed’s development.

• All software created specifically for the Test-bed should be open source and thus sharable on a
platform like GitHub.

Documentation and code together

Having the code and the specifications documents together on one online repository makes development
work and sharing of this work much easier, findable and understandable for all the involved and for external
parties. GitBook and GitHub originate from the same platform and are already linked to each other. Using
GitBook next to GitHub is thus the most logical choice.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 15 of 52

This chapter explains the process used to draft the functional requirement specifications, which are
documented in this deliverable. This iterative requirements design-process was used by the Test-bed’s core-
development organizations (FRQ, TNO and XVR) and by the other development and review partners (AIT, ITTI
and TCS; GMV, JRC and WWU).

The process followed is not an exact copy of a single, specific design or software-development method, but
is based on the generic agile software development method, currently used by many software-developers
worldwide.2 This agile process encompasses multiple parallel design and development efforts going on at the
same time. Experts of different domains (e.g. functional designer vs. software developers, or organization
creating component A vs. organization developing component B), work on their own component and meet
regularly to discuss the overall architecture and links between these components. The WP-leader (i.e. TNO)
maintains an overview over all components and the high-over architecture of the entire Test-bed and thereby
actively steers the requirements design process.

Figure 2.1: The iterative process to set the DRIVER+ Test-bed specifications

2 en.wikipedia.org/wiki/Agile_software_development [2]

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 16 of 52

The iterative requirements design process followed is visualized in Figure 2.1. The following 9 steps can be
distinguished in this process, but note that the order of these steps stated here differs in each round the
iterative process is followed:

I. The design process is started by gathering lessons learned from the previous phase of the project. The
experience of partners involved in Task 932.1 that has participated in former experiments have been taken
into account. The outcomes are documented in the next chapter.

II. The high-level use-cases of the entire Test-bed are considered. This quickly led to the fact that the Test-
bed is split up in multiple components, due to the different functionalities of these components and to be
able to divide the work amongst multiple development partners.

III. For each component (and functional/technical sub-component) a market research is done about what is
already available off-the-shelf, to prevent development efforts are wasted on designing and making
everything from scratch while there is a sufficiently functioning component available. Sometimes these
components can be directly included in the Test-bed (e.g. open source Kafka technology), sometimes parts
are re-used from the previous phase of the project (e.g. partly the CIS architecture and base technologies)
and sometimes only the functional design is reviewed (e.g. the NATO exercise management tool JEMM) and
references are made to such products/technologies.

IV. Next to off-the-shelf components and technologies, also the experiences of development partners in
similar projects are used to draft the Test-bed’s specifications. For instance the Observer Module, as made
by Middlesex University, Netherlands Aerospace Laboratory and XVR in the FP7-project CRISIS3, served as a
source of design input for the Test-bed’s Observer Support Tool (see section 5.8).

V. Other Solution-owners within the DRIVER+ consortium are consulted regarding technical link-abilities, as
one of the primary functions of the Test-bed is to enable solutions (in case these are software) digitally link
up with the Test-bed to exchange information in between these solutions and with other components. Next
to Solution-owners included in the DRIVER+ consortium, also potential external Solution-providers are
considered, both because each Trial is open to externals and because of the required sustainability of the
Test-bed.

VI. Similarly like consulting Solution-owners, the possibilities and impossibilities at Trial-owners are also
reviewed. The Test-bed must be able to function at all Trial-owners facilities included in the DRIVER+
consortium. For the Test-bed’s sustainability outside the DRIVER+ project it must also be relatively easy to
implement the Test-bed at other locations.

VII. Steps IV, V and VI together define the context and constraints in which the Test-bed must be able to
function. Next to the characteristics of the environment the Test-bed is implemented in (e.g. computer
hardware can be located indoors and does not have to be packed weather-proof), this contextual description
also provides a set of constraints on the Test-bed (e.g. Test-bed’s core must be able to function without a
high-end full-time available internet connection, as some Trial-owners cannot guarantee this availability 24/7
at their site).

VIII. All these requirements (i.e. in detail a set of functional and technical requirements and wishes) are
documented. This documentation forms this deliverable D923.11. As know-how about the Test-bed's
components and their functioning grows during development of these components and the use of them
during Trials, D923.11 is a living document which is updated online whenever specifications are changed or
elaborated.

3 CRISIS-project coordinated by Middlesex University, which received funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement n° FP7-242474 [16]

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 17 of 52

IX. The drafting of these requirement specifications is done in parallel with the functional and technical
design. These design and the specification efforts highly influence each other. So although design decisions
are documented in D923.21/D923.22/D923.23 (describing the Reference Implementation of the Test-bed),
both these steps form an integral part of the requirements specification process.

This circular process of documenting the functional specifications is followed many times. When viewed from
a distance, this process is followed during four main phases:

1. This process was followed already by the core DRIVER+ development partners, who also participated
in the former phase of the project. Their experiences and ideas on improvements were agreed upon
and documented in the WP923 description in the DOW. This resulted in the main concepts behind
the new Test-bed.

2. At start of WP923, the core development partners TNO, XVR and FRQ had face-to-face and remote
specification and design meetings, going through all of the Test-bed’s components, what they are
intended for, how they are linked and the high-over functional and technical design of them. The
outcomes were documented in the meetings’ minutes.

3. Following these high-level specification and design meetings, both internal meetings and face-to-
face and remote meetings with other component developers were organised. The high-level
specifications and designs were shared and these were then further detailed and documented in
component specific documentation (see also chapter 5).

4. During the development of each component, the specifications and designs are further detailed and
updated. This phase will continue when the Test-bed is used in Trials. The outcomes of this phase
are the components and the updates on the living documents.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 18 of 52

In the former phase of the project, several experiments were organised to test crisis management systems
and solutions. This chapter will discuss the lessons that can be learned from these experiments, specifically
related to the technical infrastructure (i.e. the Test-bed), encompassing the connection to the operational
systems as well as the simulators.

An analysis of deliverables and internal documents4 about former experiments learned that very little was
documented about the experienced good and bad characteristics of infrastructures used within former
experiments. So in order to collect the below stated lessons learned, several interviews were conducted with
former experiment leaders and developers and architects involved in the former phase of the project.

1. A generic Trial Guidance Methodology (TGM) is needed for analysing the need, and preparing,
executing and reviewing an experiment.

2. Only one Test-bed must be created and this must be used for each and every Trial.
3. The Test-bed should be open source.
4. The Test-bed should have a message-oriented architecture.
5. The Test-bed should use well-defined, easily accessible, syntactically correct messages, and close to

common standards.
6. The Test-bed should be clearly defined and scoped, i.e. what it is, and what it is not.
7. The Test-bed must be easily reproducible, and offer administrative as well as supporting tools and

services.

All of these aspects are being addressed in DRIVER+. The experiences from the previous phase of the project,
based upon which the lessons learned are identified, are described in the following sections.

In the former phase of the project, there was no clear overall process to perform an experiment: how to
prepare, execute and evaluate an experiment, which questions to ask, how to look for existing solutions, etc.
Different partners had different ways of doing things, and there was no clear guidance or manual to steer
them all. This lead to miscommunications, discussions, inefficiency, stress and less than optimal experiments.

Lesson learned: A generic Trial Guidance Methodology is needed for analysing the need, and preparing,
executing and reviewing an experiment.

Each of the organised experiments in the first phase of the project created its own, unique, Test-bed to
perform the experiment. Meaning the Test-beds used were based on for example:

• A legacy system owned by one of the consortium partners.

• The High-Level Architecture (HLA), an open but complex standard for connecting different
simulators, but with only a few (expensive) commercial providers and a steep learning curve.

4 Full list of experiments analysed for lessons learned is included in D922.21 - Trial guidance methodology and guidance tool
specifications (version 1) [14]

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 19 of 52

• A semi-open source system based on Apache Kafka, a message streaming service.

This may have made sense for a small one-off project that does not need to be repeated, but for a pan-
European project, a lot of resources were used inefficiently. In particular, this meant that:

• Every solution or simulator provider had to connect his system to different Test-beds, using different
protocols.

• Every solution or simulator provider had to deal with different message types.

• Setting up and managing the IT infrastructure was difficult, and offered little learning opportunity as
in practice the Test-bed use differed for each experiment.

Lesson learned: Each Trial must use the same Test-bed. Therefore, only one Test-bed must be created.

None of the used Test-beds were completely open source. Again, this does not matter within the scope of
one project, were partners could use these Test-beds license for free, but if the Test-bed is to remain
sustainable after the project, and be attractive to outside parties, this will be a serious roadblock. Besides
obvious aspects as costs for getting a license, it would create a strong dependency on the owning party: each
change someone likes to make would have to be approved by the owner. And after an approval, it would
take time to implement the change request, potentially leading to serious delays.

In addition, from a developer's point of view, dealing with a large and complex closed source environment
can seriously delay or even block his/her development efforts. Failures in the developer’s new component’s
software may be caused by bugs in other linked, closed source components. Because these other
component(s) are closed sourced, they cannot be fully examined by the developer directly, making it
impossible to determine whether the issue is caused by his/her own software or by the linked component(s).
This investigation then requires both the developer looking in his/her code and external developers looking
in their code. And for any bug that is discovered in a linked closed source component, it is up to the owner
of that component if and when to fix it. There is no chance to quickly find and fix it by the developer of the
new component.

Lesson learned: The Test-bed should be fully open source.

Each Trial needed to connect many, quite different, software systems: end-user solutions, incident
simulators, 3D visualisations etc. But although each Test-bed was different, they all used a message-based
infrastructure. The reasoning behind that is simple: when you have n systems, the number of connections
between different systems will grow exponentially (#connections = ∑ n-i, where i=1..n-1). So it is better that
the Test-bed uses a kind of mail service or message broker: if you want to communicate something, tell it to
the broker and the broker will make sure that your message is delivered to the right person at the right time.
So all messages go into one hub, and are then being distributed to all other applicable components. As a
result all components only have to connect to this one hub, instead of separately to all other components.
This components-hub architecture is in software development called a message-oriented architecture.

Lesson learned: The Test-bed should have a message-oriented architecture.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 20 of 52

When different systems need to talk to each other, the messages they exchange must be well understood,
at least at a syntactic level (I can read your message), and preferably also on a semantic level (I understand
your message). The latter, however, has implications beyond what this project tries to solve here, as it would
entail a universal translator that can translate any language in any other language including organization
specific use of definitions. To further complicate matters, in a crisis management environment, a Test-bed
has to deal with two types of systems: solutions and simulators, each with their own set of messages.

For simulators, often DIS (Distributed Interactive Simulation) or HLA (High Level Architecture) are used as
standards to exchange messages. Syntactically, they can be easily interpreted, albeit often their strict
schemas do not allow for sufficient freedom to express deviations from the standard, and certain fields may
be misused to communicate this missing information.

For solutions in the operational crisis management domain, the CAP (Common Alerting Protocol), EMSI
(Emergency Management Shared Information) and EDXL DE (Emergency Disaster eXchange Language)
standards are often encountered. But also here, in practice different flavours can be seen throughout regions
and organizations. Even a simple standard as CAP has different implementations across countries, but often
also between different organizations. Furthermore, not all standards are freely available. For example one
has to pay for the TSO/EMSI standard. And even if these costs are often negligible in a large project, it may
cause delays, since a developer needs it, but has to get approval in order to buy it, and is probably not allowed
to share it with project partners. For sustainability of the Test-bed, this is a disadvantage.

To deal with these issues, the Test-bed should have:

• A well-defined set of messages.

• Each message can be validated syntactically.

• A message should be close to the common standards (i.e. you are allowed to tweak the standard to
suit your Trial).

• Each message's definition (often called schema) must be easily accessible to all participants.

Lesson learned: The Test-bed should use well-defined, easily accessible, syntactically correct messages, and
close to common standards.

In the former phase of the project, the respective partners had no clear, consistent picture of the scope of
the Test-bed. To perform an experiment, often most of the following components were needed:

• Operational systems: either legacy systems, or new systems that were to be evaluated.

• Simulators: to create a fictive incident, such as a flooding, earthquake or explosion, and a virtual
representation of the world.

• Gateways for exchanging messages between operational systems, between simulators, and between
operational systems and simulators.

• Support tools, for administrating the technical infrastructure, controlling an experiment and
observing/reviewing the results.

• Location, i.e. the place where the experiment took place.

• Services, like sharing maps, census data, etc.

So for some people involved in experiments (e.g. Solution-providers), the Test-bed was only the gateway
between operational systems. For others (e.g. the experiment organiser), it contained all of the above.

Lesson learned: The Test-bed should be clearly scoped, i.e. what it is, and what it is not.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 21 of 52

The complexity is partially related to the previous observation that each experiment created its own Test-
bed environment. However, the problem went deeper than this, since an experiment also needed:

• Administration of all systems: are all systems up-and-running; is everyone connected correctly, so
they receive the expected messages; are some messages secured properly.

• Supporting tools: what is the main list of scenario events, and how to share this; what is needed to
observe during an experiment, and how to collect these observations for an after action review; how
to evaluate the outcome of an experiment.

• Data services: maps, map layers, weather reports, census data, etc. need to be shared between
operational systems and simulators.

• Reproducing a Test-bed: In case an experiment is to be repeated.

Lesson learned: The Test-bed must be easily reproducible.

Lesson learned: The Test-bed must offer administrative as well as supporting tools and services.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 22 of 52

This chapter first gives the overall aims of the Test-bed in relation to the objectives of DRIVER+ as a whole. It
describes the environment in which the Test-bed should function and thereby the high-level functional
design of the Test-bed. In section 4.4 the different types of users actively operating (i.e. using) the Test-bed
are described and a high-level use-case for each use-mode is provided.

In the DOW, the first stated objective of DRIVER+ is to “Develop a pan-European Test-bed for Crisis
Management capability development (…)”. In more detail:

• This to-be-developed Test-bed should specifically provide “(…) an infrastructure to create relevant
environments, for enabling the Trialling of new solutions and to explore and share CM
capabilities(…)”,

• because this Test-bed is used to “Run Trials in order to assess the value of solutions addressing
specific needs using guidance and infrastructure”.

So the entire Test-bed is supportive to assess solutions in a realistic, controlled and safe manner. Furthermore
the Test-bed should not be a one-time implementation, but can be implemented within multiple
organizations, both during the project, but also after the project and at organizations not being a project-
partner. And the Test-bed will be delivered in 3 versions, to be able to take in the experience gained by using
it in Trials and the Final Demonstration and have the ability to further develop it, both on the level of quality
and on functionality.

Based on these DRIVER+ objectives and the lessons learned from the former phase of the project, the
following high-level requirements are set. Note that this list consists of both real requirements (i.e. must
do's) and wishes (i.e. should/could do).

1. A realistic Platform to assess solutions

The Test-bed must be able to be implemented at a space - called Platform – in which Trials can be
conducted in a realistic CM setting, in a controlled manner, in safety and not intervening with other
(real CM) operations. This Platform is a physical and digital work-space for both the Participants (i.e.
the CM practitioners using the solutions during the execution-phase of the Trial) and the Trial staff
(i.e. all other people involved during the preparation-phase, execution-phase and evaluation-phase
of the Trial).

2. Test-bed is used fitting the Trial Guidance Methodology

The Trial Staff will conduct Trials using this Test-bed following the Trial Guidance Methodology and
will receive support and training, such that each Trial is set-up, executed and evaluated optimally by
the Trial Staff.

3. Connect solutions with each other

The (mainly digital) infrastructure of the Test-bed must make it possible to connect the solutions in
a Trial with each other, such that they can be controlled, can exchange data with each other and can
be fed with simulated data

4. Connect simulators to provide information of a fictive crisis

The infrastructure of the Test-bed must also provide one or more simulated incidents/crises, because
trialling solutions during a real incident is both from an ethical and a practical perspective impossible.
These simulated incidents - which can be completely virtual and computer-based, completely staged

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 23 of 52

outdoors or a combination of the two - are to provide simulated data to the solutions via the Test-
bed’s infrastructure and are to provide information flows about the fictive incident(s) to the
Participants (i.e. information flows not being presented via the solutions, for instance for incident
commanders being present at a fictive incident scene an eye-level view on that scene).

5. Interface to control the Trial

The Test-bed’s infrastructure must provide an interface to the Trial Staff – specifically the Operators
controlling the Test-bed’s components – to create fictive incidents and to control how this fictive
incident changes during the Trial’s execution-phase and to control the availability of and the data
to/from the solutions during this execution-phase.

6. Interface to make observations

The Test-bed’s infrastructure must provide functionality for the Trial Staff to save observations,
recordings and data-logs coming both from the solutions and from the simulated incidents. During
the evaluation-phase, these observations, recordings and data-logs are to be combined to support
the creation of an evidence-based evaluation report of the Trial.

7. Open source Test-bed

Crisis management affects us all, and therefore the Test-bed should achieve a broad adaptation and
no hindrances with respect to license management. In addition, being open source, all developers
from whatever organization are welcomed to create pull requests to improve the Test-bed’s
components.

8. Open for commercial organizations

Commercial organizations can help to integrate the Test-bed in an organization, offer software
solutions that exceed the capabilities of the originally offered components, or provide support in
maintaining Test-bed components. The development and maintenance approach, while components
are delivered in the project open source, should not exclude these commercial organizations.

9. Standardized connections/interfaces

The Test-bed’s infrastructure, specifically the software’s data exchange interfaces, must be
standardized as much as possible to ease up connection and joint use of many different solutions
and simulators, both from within the project and external ones.

10. Modularized Test-bed in several components

The Test-bed’s infrastructure must be modularized and can be implemented partly and completely,
such that it can be used efficiently and effectively during all development-, testing-, preparation-,
execution- and evaluation-phases, by Trial-owners, Solution-providers, Simulator-providers and
other Test-bed development parties.

11. Provide data-sets for development and testing

Specifically for developers who link up solutions and simulators to the Test-bed and for Trial Staff
involved in scenario creation, the Test-bed must provide functionality to easily obtain (simulated)
data and component’s inputs/outputs without the need that for every development step/test the
entire Test-bed with all of its components must be activated, as this would require a too high
overload on applications, computer hardware and manpower to perform even a simple test.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 24 of 52

12. The Test-bed shall run in a Docker environment

Installing software can be tedious, and due to its nature, the Test-bed consists of an integration of
many tools. And although each tool can be installed separately, in order to facilitate an easy
deployment, Docker images and Docker compose will be used to rollout the Test-bed. Docker images
are ready-to-use installer applications to install a specific software component on a computer.
Docker compose provides a process to combine multiple Docker images together, such that all can
be installed within one process, resulting in little manpower needed to implement any combination
of Test-bed components. As Docker is supported on Unix as well as Windows operating systems,
many different organizations should be able to run it smoothly.

As a consequence, for the moment most of the supplied tools will run in a Unix environment, since
Windows-based Docker containers are still experimental. However, this will not limit developers to
create Windows-only solutions, as it can still connect to the Test-bed.

13. The core of the Test-bed is based on Apache Kafka
In order to integrate different tools within the Test-bed, and to make it easy to connect them with
other solutions, Apache Kafka is selected as base integration platform. And Kafka will be the only
integration platform used. Although there are many good open-source messaging systems available,
Kafka has a number of distinct advantages:

• It is supported by the Apache organization, and used actively by a number of major commercial
organizations. This means that it will not go away quickly, and it has many client connectors to
ease integration.

• It is simple to setup and run, and performs very well. Where similar software systems cannot
deal with more than 10.000 messages per second, Kafka can process a tenfold.

So while there are other environments that could satisfy the DRIVER+ needs, this current reference
implementation relies on Kafka, because the Test-bed should be a good reference implementation
leveraging the efforts of the Kafka community. Being more generic by supporting multiple back-ends
would require a lot more development work, as well as not being able to leverage the particular
strengths of the backend.

Although this actually is a design decision supported by all development organizations, during further
design meetings it turned out that this decision has so much impact on the design of all components;
therefore, this decision is stated here. By taking this decision, it forms a technical requirement on all
components.

14. Linked to the Training Module

And finally, the Trial Guidance Methodology (TGM), the tools to use this methodology and the Test-
bed must be accompanied by a Training Module, primarily aimed at people organizing Trials (i.e. the
Trial Staff) explaining how to use the TGM and all of the Test-bed’s components best.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 25 of 52

Figure 4.1: The Test-bed in its environment

The Test-bed is not just a stand-alone collection of software applications. It is used within a larger
environment of DRIVER+ entities, as visualized in Figure 4.1.

• Participants are using the Solutions to solve a fictive crisis. Solutions are any type of tool/product
(e.g. a software package, a training method or a new standard operating procedure) that is intended
to address a practitioner gap and to support/improve Crisis Management.

• This fictive crisis exists in a virtual world and is thus a “virtual crisis”. This virtual crisis is created by a
set of simulators (this can be computer-based Simulators to simulate a crisis within a virtual reality
world, but a fire brigade’s physical exercise terrain is also a type of simulator to stage a physical yet
fictive incident, and it is also possible to use a combination of both).

• Both solutions and simulators are connected to the Test-bed. The Test-bed’s core makes it possible
to connect the solutions with each-other and feed them with data coming from, or flowing to the
simulators. The functionalities of each component of the Test-bed are explained in the next
paragraph.

• The Trial Staff uses the Test-bed during the:

o Preparation-phase – to build the scenario, set-up and test all solutions to be trialled, and set-
up and test the simulators to support this.

o Execution-phase – to control how the virtual crisis scenario evolves, observe the Participants
and gather data-logs from both the solutions and the virtual crisis present in the simulators.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 26 of 52

o Evaluation-phase – to gather and analyse all observations, recordings and data-logs, and
base an evidence-based evaluation report on these.

• The Trial Staff is supported - during all phases, but particularly in the preparation-phase - by the Trial
Guidance Methodology (TGM). The Guidance Tool supports the Trial Staff by leading them step-by-
step through all phases of the Trial, thereby assuring that the Trial Guidance Methodology is followed
correctly and lessons learned are used most effectively. This together with practical and logistical
information is documented in the Trial Action Plan (i.e. an elaborate document about how the Trial
is set-up, how it is to be run and what to evaluate). The Training Module provides the Trial Staff with
training on this TGM, on using the Guidance Tool and Trial Action Plan and on how to implement and
use all components of the Test-bed best.

• The Platform provides the physical space (i.e. one or more locations) and hardware to run the Trial
(e.g. a simulation centre like available in The Hague, but this can also be a live exercise terrain). So
the Test-bed, solutions and simulators are available there, it provides rooms/areas for Participants
to execute CM operations with the solutions as they would do in real-life crises and provides
rooms/areas for Trial Staff to operate the Test-bed and simulators, thereby controlling how the Trial
runs. The Platform is also used in the preparation phase, by installing and testing all (software)
components needed during the running of the Trial and for evaluation of the Trial.

Figure 4.2: All components of the Test-bed

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 27 of 52

Zooming in on the Test-bed, as shown in Figure 4.2, the following components can be distinguished:

• The Common Information Space (CIS), located in the central software connection bus, provides an
interface to connect the solutions to the Test-bed. These connections are made by using the
standardized CIS Adapters.

• The Common Simulation Space (CSS), provides a similar connection bus to connect the simulators
to the Test-bed. These connections are made by using the standardized CSS Adapters.

• Because the type of data-connections and the required data-exchange speed differs for solutions on
one side (i.e. report-like messages with a lower update speed) and simulators on the other side (i.e.
item oriented data with high update speed), the CIS and CSS are split. They are connected via one or
more Gateways. Gateways are used from CSS to CIS to feed solutions with data from the simulated
crisis (e.g. positions of virtual police cars driving around in the fictive region) and from CIS to CSS to
pass through changes inputted via one or more solutions to the simulators (e.g. a command police
to block off an area, resulting in several police cars driving to the edges of that area and setting up
road blocks there).

• A Validation Service can be added to safeguard messages sent between CSS and CIS are correctly
filled and understandable by the counterpart.

• Both the CIS and the CSS are controlled via the Test-bed Admin Tool. This provides an interface for
Trial Staff to control which solutions and simulators are to be started and which data is (not)
exchanged.

• The Trial Scenario Manager and the Time Service components provide functionality and an interface
for Trial Staff to:

o In the preparation-phase: create a high-over timeline of the Trial Scenario with Injects of
changes to the virtual crisis which can be activated during the execution-phase (note that it
is far from necessary that all injects are activated and that this time-line in most cases has a
branched structure of all things foreseen that could happen during managing the virtual
crisis).

o In the execution-phase: activate the needed Injects based on decisions (not) taken by the
Participants, the use by them of the solutions and/or specific detailed storylines to be
activated to trigger specific use-cases of one or more solutions. These Injects then trigger
prepared changes in the Test-bed manager (e.g. simulate failure of internet leading to
solutions not receiving data from simulators anymore), in the CIS or solutions directly (e.g.
new message of role-played stakeholder) and mostly in one or more simulators (e.g. wildfire
expands on the West flank).

o In the execution-phase: influence the fictive time clock, meaning starting the Trial (i.e. play
the time from a fictive point in time, for example a fictive climate summit in October 2020),
influencing the speed of time of the fictive clock (e.g. speeding up time to go through CM
operations quicker than in reality or slowing it down to focus on specific moments during CM
operations), pausing the fictive clock (e.g. for a coffee break or a time-out for extra
explanations), jumping back in fictive time (e.g. re-doing a specific CM operation) and
stopping the fictive time (i.e. ending the Trial)

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 28 of 52

• The Observer Support Tool provides a module to prepare, make and gather observations:

o In the preparation-phase: the Observation Manager (i.e. person within the Trial Staff) can
manage who can observe who and create observation templates dedicated on what is to be
observed, based on the data collection plan and set-up according TGM guidelines. Ethical
considerations regarding the formulation of observation templates and storage of data are
to be taken into account during this phase.

o In the execution-phase: Observers (i.e. one or multiple persons within the Trial Staff) can
create observations based on prepared observation templates.

o In the execution-phase: all observations are gathered and the Observer Manager sees them
incoming and can guide the Observers by extra Observation Templates and sending them
messages.

• The After Action Review (AAR) module gathers in execution-phase the data-logs and (screen-)
recordings coming via the CIS from the solutions and via the CSS from the simulators and gathers the
Observations coming from the Observation Support Tool. In the evaluation-phase these data-logs,
recordings and observations can be reviewed.

• For development and implementation purposes, the Test-bed also contains:

o A Message Injector to input specific, single messages during development to test whether
these messages are correctly received by another component (e.g. a fire alert message which
is to be produced by a simulator is correctly received by a solution).

o A Play Service to input several messages in chronological order, to test that without the Trial
Scenario Manager and simulators fully up and running these messages are correctly received
by the solutions or vice versa.

o Data Server(s) to feed the simulators and potentially also the solutions with geo-specific
information (e.g. the region The Hague, all of its fire stations and all fire truck usually present
there; or a full digital map with GIS-data of Vienna)

o A Docker Environment providing images (e.g. installers) of each component, such that the
installation of a limited Test-bed configuration at a Solution-owner and installation of the
entire Test-bed at a Trial owner’s simulation centre can be done quickly and transparently.

The next chapter (chapter 5) provides summarized overviews per component, including a hyperlink to that
component’s separate detailed specifications document.

The following high-level use-cases describe the workings of the complete Test-bed during the different
phases of use. Note that developing and updating the Test-bed’s components is left out of these phases of
use. The use-cases are focused on how users operate components of the Test-bed. This section is intended
to describe the coherent use of the complete Test-bed and to further explain the functional design of the
Test-bed. This section is not intended to detail each specific component. Therefore, the steps in the use-cases
are described only on a high-over level.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 29 of 52

The Test-bed is used throughout 3 phases and next to that in Development-mode (i.e. use-modes of the Test-
bed - Table 4.1).

Table 4.1: Use-modes of the Test-bed

Use-mode Description

Development mode
In which the Test-bed’s components are developed or a solution or simulator is
connected to the Test-bed.

Preparation phase
In which all solutions and simulators are connected to the Test-bed, the Scenario
is built and the entire set-up is tested to assure a good run of the Trial.

Execution phase
In which one or more sessions are run with Participants using the solutions
according to the evolving Scenario.

Evaluation phase
In which the Trial’s sessions are analysed and conclusions are drawn about the
usefulness of the solutions and the way the Trial was executed.

Throughout all use-modes, the user-types as listed in Table 4.2 can be distinguished. Note that one member
of the organizing Trial Committee can take up the roles of several user-types (e.g. one person being a Trial
Scenario Builder and the Trial Director and one of the Trial Evaluators). Also note that the entire set of roles
to be included in the preparation and execution of a Trial (as listed in the Trial Action Plan template) is longer
than the list provided in this paragraph. This paragraph focusses the user-types only on those roles actively
using one or more components of the Test-bed.

Table 4.2: User-types of the Test-bed

User-type Description

Participants
Persons (usually CM practitioners) actively using the solutions and performing
CM-operations based on which information they receive from the solutions and
directly from the simulators about the fictive crisis.

Trial Scenario
Builders

Persons from the Trial Staff who are configuring the Trial Scenario in the Test-
bed's components (i.e. Trial Scenario Manager, simulators, Observation Support
Tool, Test-bed Admin Tool and potentially also by configuring solutions).

Trial Director
The single leader of the Trial Staff (i.e. 1 person) being, in the execution phase, in
charge of how the Trial and its Scenario evolves during the session(s).

Operators

Persons from the Trial Staff who are operating the Test-bed's components during
the execution of the session(s), with a primary focus on the Trial Scenario
Manager (i.e. how the Scenario evolves), the Test-bed Admin Tool (i.e. whether
everything is working correctly and controlling information flow to/from
solutions and simulators) and directly in the simulators (i.e. how the Scenario
evolves).

Role-players
Persons from the Trial Staff who are supporting the Operators by providing role-
play towards the Participants, thereby simulating stakeholders not present (e.g.
performing phone-calls as minister or King of the Netherlands).

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 30 of 52

User-type Description

Observer Manager
Person of the Trial Staff (i.e. usually 1 person, but can be multiple) to operate the
Observer Support Tool both in the preparation phase (configuring the tool for a
specific Trial) and in the execution phase (i.e. managing the Observers).

Observers
Persons who take observations during the Trial’s session(s) by using, most likely,
the Observation Support Tool. Observers belong to the Trial Staff, independent
whether they are employed by DRIVER+ internal organizations or externals.

Trial Evaluators
Persons from the Trial Staff who analyse the Trial's session(s) during the
evaluation phase, using the After Action Review component.

Implementers
Technical support staff who install and test one or more of the Test-bed's
components at a Platform location.

Solution-owner

An organization that has developed a solution which is to be trialled using the
Test-bed. For this, technical developers of that organization have to link their (IT)
solution with the Test-bed via a CIS Adapter, thereby using (a sub-set of) the
Test-bed's components, including the extra developer components.

Simulator-owner

An organization that has developed a simulator which is used during a Trial to
provide information from a fictive crisis. For this, technical developers of that
organization have to link their simulator with the Test-bed via a CSS Adapter,
thereby using (not all) Test-bed's components, including the extra developer
components.

Test-bed
Component
Developers

Persons working within the organizations creating the Test-bed's components.
These developers also use other components of the Test-bed to develop and test
their own component.

This use-case is executed in Development mode, upfront of (i.e. initial development) and parallel to (i.e.
component updates) the preparation, execution and evaluation of the Trials.

1. Developers draw out a functional and technical design of a component and the test-cases, taking into
account the specifications of the other components their own component is linked to.

2. Developers develop the component and, if needed, adjust the functional or technical or test-case design.
3. If needed, developers contact developers of other components to adjust the specifications.
4. Developers test their own component stand-alone and in combination of the other components it is

linked to.
5. Developers create a Docker image of their component and upload it together with documentation to

the Docker Environment.

This use-case is executed in Development mode, upfront of the execution and evaluation of the Trials, and for
bug-fixing during the preparation phase of a Trial.

1. Solution/Simulator-owner is being trained/instructed about the aims of the Test-bed, the available
CIS/CSS Adapters and how to use and not use them.

2. Solution/Simulator-owner selects the most applicable CIS/CSS Adapter and develops this into a
Solution/Simulator specific adapter.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 31 of 52

3. Solution/Simulator-owner implements the Test-bed components needed to test its own
Solution/Simulator and the specific adapter created

4. Solution/Simulator-owner tests its developed Solution/Simulator and the specific adapter and adjusts it
if needed.

This use-case is executed at every location where the Test-bed is (partly) installed or updated, so before the
Trial’s execution phase starts.

1. Implementer, using the Docker Environment, creates a full installer of all components to install.
2. Implementer installs this installer on the hardware available at the Platform location.
3. Implementer also sets-up/installs the solutions and simulators needed for a Trial.
4. Implementer tests whether the installation was successful.
5. If issues come to light during these tests, the Implementer contacts the applicable Component

Developers, Solution-owners and/or Simulator-owners.

These steps are repeated until the installation of all components, solutions and simulators is successful, such
that the Trial can be prepared and run.

This use-case is executed at the start of every use-mode of the Test-bed.

1. Operator or Implementer starts up the Test-bed Admin Tool, the Trial Scenario Manager and the
solution(s) and simulator(s) that require a manual start-up.

2. Operator or Implementer selects the applicable Scenario, which starts up the other required
components.

3. Operator or Implementer checks correctness of start-up of all needed components via the Test-bed
Admin Tool.

4. Operator or Implementer restarts components and/or reloads Scenario if some start-ups were
unsuccessful.

This use-case is executed in the preparation phase of each Trial.

1. Scenario Builders follow the Trial Guidance Methodology using the Guidance Tool to come up with a
detailed Trial Action Plan (TAP) about what to trial, how to trial and what the Scenario will be.

2. Scenario Builders configures the components and selected solution(s) and simulator(s) according to the
TAP.

3. Scenario Builders select data set(s) from the Data Server(s) to populate the solution(s) and simulator(s).
4. Scenario Builders enter the Scenario’s timeline(s) in the Trial Scenario Manager.
5. Scenario Builders set a fictive start-time in the Time Service.
6. Scenario Builders set up a fictive, virtual crisis inside the simulator(s) and prepare the injects in these

simulators that could occur.
7. Scenario Builders configure the possible data exchanges between CIS and CSS by setting up the

Gateways and the Test-bed Admin Tool.
8. The Observation Manager configures observer roles and observation templates in the Observer Support

Tool.
9. Scenario Builders, Observer Manager and future Operators and Trial Director run one or more test-

sessions to check the entire Scenario and make adjustments if needed.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 32 of 52

The last step is repeated until all involved feel comfortable with the set-up and Scenario to run successful Trial
sessions.

This use-case is executed just before the execution phase of each Trial.

1. Scenario Builders and the Trial Director (and potentially Simulator-owners) instruct Operators new to
the Trial and its Scenario about the Trial Scenario, what can be adjusted during the Trial execution, under
which conditions and how.

2. Scenario Builders, the Trial Director and Operators instruct Operators new to the Trial about the Trial
Scenario and which injects can be role-played and how.

3. Observation Manager instructs the Observers about the Trial Scenario and what is to be observed by
whom and how to use the Observer Support Tool and the prepared observation templates.

4. Scenario Builders and/or Solution-owners instruct Participants about how to use the Solutions.
5. Scenario Builders and/or Simulator-owners instruct Participants about how to use the applicable

simulator interfaces.
6. Trial Director gives a briefing to all Participants and Trial Staff about the upcoming session.

This use-case is the execution phase of each Trial, focussed on a single session (i.e. 1 time a Scenario is run).

1. All Participants and Trial Staff take position at their respective locations.
2. Trial Director, with help of Operators and Observers, checks readiness of all Participants and Trial Staff.
3. Trial Director gives the ‘go’ to start session.
4. Operator starts the running of the fictive time in the Time Service and thereby the evolution of the

Scenario in the Trial Scenario Manager.
5. Participants acquire information about the fictive crisis via the solutions and simulators.
6. Participants use the solutions as much as possible as they would do during a real crisis and take decision

accordingly.
7. Observers gather observations following the observation templates in the Observer Support Tool and

the Observer Managers sees these coming in and directs the Observers.
8. Operators and Role-players activate injects based on the decisions taken by Participants, the Scenario

time-line(s), cases to trial the solutions on, observations received and over-all directions by the Trial
Director.

9. When all applicable Scenario time-lines and cases to trial the solutions on are activated, or the Trial
session has diverted too much from the Scenario, the Trial Director decides to stop the session.

10. The Operator stops the Scenario and fictive time progression via the Trial Scenario Manager and Time
Service.

11. The Operators use the After Action Review component to gather and save relevant data-logs, recordings
and observations of that session. Data not selected for later evaluation is deleted.

12. Observers or Evaluators might question the Participants, if the evaluation process states so.

In case of an error or crash during a session, these steps can be repeated to start a new session from the point
before the error/rash occurred.

These steps can also be repeated from a point half-way the same Scenario to trial the solutions under the
conditions if another decision was taken and thus other Scenario time-lines were followed.

One can also load another Scenario and repeat the steps above, thereby creating a new session and trialling
the solutions under completely other conditions.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 33 of 52

This use-case is the evaluation phase of each Trial.

1. Evaluators view the data-logs, recordings and observations from a single session, using the After Action
review component.

2. Evaluators analyse the combination of data-logs, recordings and observations from one or multiple
sessions to research how exactly the solutions were used, how these solutions performed under certain
circumstances and how the Participants reacted under these circumstances.

3. Evaluators can contact Solution-owners or even Simulator-owners to extract more information from
specific data-logs and recordings.

4. Evaluators can contact Participants to gather more information about specific moments during a
session.

5. Evaluators draw conclusions about these analyses into the usefulness of the solutions, the way the Trial
was set-up and executed and refer back to the Trial’s objectives. All this is documented in the Trial’s
evaluation report.

6. Data analysed or not needed anymore is deleted.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 34 of 52

This chapter contains for each component an overview of what it is aimed at, who uses it and in which phase
of the Trial it is used, in the form of a table per component. If applicable, the tables also contain a hyperlink
to the detailed specification of this component.

Table 5.1: Common Information Space

Item Description

Short description

The Common Information Space (CIS) describes the concept of
information exchange between tools that are connected to the Test-
bed. Also, information provided by simulations are forwarded and
distributed to the tools via the CIS, and vice versa, messages sent
from the CIS are transmitted to the CSS.

Who will use it

Directly:
- Developers
Indirectly
- Everyone using a solution connected to the Test-bed

Main functions

The CIS will account for:
- Connecting the tools to the Test-bed via CIS adapters
- Distribution of messages
- Security regarding access rights (They have not been defined)

Functions it does not do
The CIS will NOT account for:
- Validation of messages

Links with other
components

- Admin tool – to configure (parts of) the CIS
- AAR – re-uses messages sent via the CIS
- CIS-CSS Gateways – data exchange between CIS and CSS in both
directions
- Validation Service – messages coming from the CSS to the CIS are
syntax validated

(Technical) conditions Apache Kafka is needed

Reference to
repository/details

The CIS itself is visible only to developers, not end-users. However, end-users may configure the CIS (or parts
of it) to a certain extend using the Admin tool described in paragraph 5.5.

https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#aar
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 35 of 52

Table 5.2: Common Simulation Space

Item Description

Short description

The Common Simulation Space (CSS) describes the concept of
information exchange between simulators that are connected to the
Test-bed. These simulators jointly generate and maintain a simulation
world needed for providing a ground truth of the fictive crisis, feed
the solutions with fictive data via the CIS – and vice versa – receive
messages sent from the CIS, and to deliver to the Participants a good
enough image of the fictive crisis for them to be assessed.

Who will use it
Implementers, Solution-owner, Simulator-owner, Test-bed
Component Developers

Main functions
The CSS will connect the simulators to each other and link to the
gateways to exchange data CIS-CSS (bidirectional)

Functions it does not do

Deal with security: Simulators don't have secrets. Semantic
validation/translation of messages send over the CSS. Other message
format support (like JSON or XML).

Links with other
components

Individual simulators (bidirectional, but note these are no Test-bed
components); Admin tool for configuration of the CSS; CIS-CSS
gateways; Trial Scenario Manager (bidirectional); Time Service (from
Time Service to CSS); AAR to use the data for analysis (from CSS to
After Action Review)

(Technical) conditions
Open source; Standardized connectors via the CSS Adapters; Possible
to run in a Docker environment; Based on Apache Kafka

Reference to
repository/details

Simulators all have their own data model of how they represent the simulated world. The CSS allows these
simulators to agree on a communication form that the simulators understand to create and maintain a joint
simulated world. Next to the CSS, there also is the Common Information Space (CIS), that is used to connect
all the solutions with the Test-bed and thus with each other. The design decision to not connect the
simulators to the CIS directly is mainly to ensure the two spaces of simulated truth and perceived/
communicated truth are kept separate inside the Test-bed.

Like with a lot of emergency management processes, obtaining relevant information from the real world to
base a decision on is either done by actually being at a specific location observing the current state, or
receiving and sending messages via all kinds of communication channels from persons or systems at a specific
location (e.g. radio communication, sensor input, camera feeds). These ways of obtaining information gives
a (shared) perceived truth to be used in further emergency management decision making. However, due to
a wrong observation or miscommunication, the perceived truth can be different than the simulated truth.
The simulators should only be concerned with maintaining the current state of the simulated truth (including
entities and processes), and shouldn’t have to deal with the different kinds of communication types for
solutions and users to create the perceived/communicated truth.

https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#scenario-manager
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/technical-requirements.html#aar
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 36 of 52

The Common Simulation Space allows simulators to only focus on maintaining the current state of the
simulated world (i.e. the simulated truth of the incident and the world around it). In order to communicate
state changes with other simulators inside the CSS, self-created communication messages are allowed inside
this space. This is different than the messages being sent over the CIS, because the CIS is more aligned with
current emergency management standards (like Common Alerting Protocol (CAP) messages, or Emergency
Data Exchange Language (EDXL) messages). In order to direct the simulated world towards a desired scenario
relevant for the Trial, the Trail Scenario manager should be able to send out messages to change the
simulated world. This should be done via inject messages that all simulators can understand in order to
execute the requested inject (e.g. start the breach, let the container explode).

Table 5.3: CIS-CSS Gateways

Item Description

Short description

The CSS-CIS gateways are the interface between the Common
Simulations Space (CSS) and the Common Information Space (CIS).
Data from the simulations is translated into data that can be
understood by the tools connected to the CIS and vice-versa. Since
they translate specific message types, there may be many of them.

Who will use it Developers

Main functions

The CSS-CIS gateways will account for:
- Aggregating messages coming from the CSS
- Translating between CSS topics and CIS topics

Functions it does not do The CSS-CIS gateways will NOT account for: Semantic translation

Links with other
components

- CIS & CSS: the gateways are the bridge between them
Validation service: the validation service is a gateway service that
validates messages going through the gateway

(Technical) conditions Must run in a Docker environment

Reference to
repository/details

https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#scenario-manager
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/technical-requirements.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/technical-requirements.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#docker

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 37 of 52

Table 5.4: Validation Service

Item Description

Short description

The message Validation Service serves the purpose of validating the
syntax of messages to match a certain standard. Only successfully
validated messages are distributed further inside the system. It is an
extra step with respect to the default validation that is carried out by
all adapters, and mainly required when testing new solutions or
during a dry-run.

Who will use it
It is internally used by the adapters, and configured via the Admin
tool

Main functions

The validation service will account for:
- Checking if the syntax of the message fulfils a certain standard
- Listening to a specific TOPIC (e.g. validation-cap-topic). if it validates,
the messages will be forwarded to the corresponding standard topic
(e.g. CAP-topic).

Functions it does not do
The validation service will NOT account for: Semantic validation of
messages

Links with other
components

- CIS-CSS gateways: the message validation is a gateway service
CIS: only messages that fulfil a certain standard are forwarded to the
rest of the system

(Technical) conditions Use of Apache AVRO schemas to represent standards

Reference to
repository/details

Table 5.5: Test-bed manager (Admin tool)

Item Description

Short description

The Admin tool can be used to configure parts of the Test-bed, e.g.
which tools are connected to each other (via the topics). Also, it
provides Test-bed information (i.e. existing topics) as well as status
information (heartbeat, configuration, logging) of the connected
tools. Furthermore, it is the main interface to the security services.

Who will use it Trial manager

Main functions

The Admin tool will account for:
- An interface to configure the CSS-CIS gateways
- An interface to configure the adapters
- Loading the KAFKA topic configurations
- Providing a Watch dog

https://driver-eu.gitbooks.io/test-bed-specification/content/technical-requirements.html#admin-tool
https://driver-eu.gitbooks.io/test-bed-specification/content/technical-requirements.html#admin-tool
https://driver-eu.gitbooks.io/test-bed-specification/content/technical-requirements.html#cis-css-gateways
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#rest
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#avro
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 38 of 52

Item Description

Functions it does not do

The Admin tool will NOT account for:
- Setting up topics after initialization
- Modifying topics after initialization

Links with other
components

- CIS-CSS gateways and adapters: they are configured using the Admin
tool

(Technical) conditions Must run in a Docker environment

Reference to
repository/details

github.com/DRIVER-EU/test-bed-admin [3]

Table 5.6: Scenario Manager

Item Description

Short description

The Scenario Manager can be used to create scenarios (master event
lists) that are injected, via the Test-bed, into the CSS or CIS. For
example, it injects a message to start a flooding, to send out emails to
participants, or to instruct a role-player to perform an act. Naturally,
it can also control the time, and (re-)start/pause/stop a scenario.

Who will use it Trial manager, scenario writers

Main functions
Publish messages, often intended for simulators, but can also be used
to directly show a message inside a solution.

Functions it does not do Record messages

Links with other
components

Can be used to send messages to simulators, but also to solutions, via
the adapter. Its strongest connection is with the Time Service in order
to control the fictive scenario time.

(Technical) conditions Must run in a Docker environment

Reference to
repository/details

github.com/DRIVER-EU/scenario-editor [4]

Table 5.7: Time service

Item Description

Short description

The Time service is the single source of truth of the fictive time during
a Trial. It listens to the scenario manager in order to play/pause/stop
a scenario, and it may speed up or slow down the simulation. Each
adapter will subscribe to the time service, and offer its users the
fictive time. When sending messages containing time information,
each service should use this fictive time. In addition, it shares the
server's time using the Network Time Protocol (NTP), so all services in
the Test-bed can use it to sync their clocks.

https://driver-eu.gitbooks.io/test-bed-specification/content/technical-requirements.html#cis-css-gateways
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#scenario-manager
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/technical-requirements.html#time-service
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#docker
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#scenario-manager

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 39 of 52

Item Description

Who will use it It is an internal service

Main functions
Publish the fictive scenario time, play/pause/stop/speed up/slow
down the time

Functions it does not do

Run the simulation time backwards or time-jumps, as this would
corrupt simulation processes. (Note that reloading a previously saved
moment during a Trial is possible and is a way to do a time-jump
backwards from an end-user's perspective.)

Links with other
components

Scenario manager and all adapters

(Technical) conditions Must run in a Docker environment

Reference to
repository/details

github.com/DRIVER-EU/test-bed-time-service [5]

Table 5.8: Observer Support Tool (OST)

Item Description

Short description

The aim of OST is to collect observations, inform observers about Trial
progress, and visualize collected data. The ethics regarding
observation collection as decided upon in the Trial design must be
taken into account by the user creating observation templates (i.e.
what to collect how).

Who will use it

Trial Manager (person who configures the OST upfront of a Trial,
manages Observers and has overall control over the system). User,
which can be an Observer or Participant

Main functions

Allowing Trial managers to setup observation questions and send
messages to observers
Assigning observers to specific observation tasks
Allowing observers to enter observations
Allowing Trial managers to monitor observations, also in real–time
Allowing participants to complete surveys

Functions it does not do

OST does not provide sets of data about events and time. This tool
waits for simulation phases from external system, publish events and
generate questions based on these data.

Links with other
components

OST is linked with Test-bed, which is responsible for providing
simulation phases – data about events and simulation time. Package
of data is sent to OST Server, events and set of questions are
generated. When the new event is displayed, OST Server notifies the
user and set of questions changes.

(Technical) conditions

Observer Support Tool (Mobile):
- Web browser
- Android (tablet and smartphone)

https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/technical-requirements.html#sm
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#docker
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 40 of 52

Item Description

- iOS (tablet and smartphone)
Observer Management Tool (Desktop):
- Web browser

Reference to
repository/details

github.com/DRIVER-EU/ost [6]
driver-eu.gitbooks.io/specification-of-the-online-observer-support-
tool [7]

The Observer Support Tool’s aim is to collect observations, inform observers about Trial progress and
visualize collected data. There are different perspectives to look at this tool. The main user, who uses the
mobile version of a tool to send his observations, is called Observer. From the other side there is a Trial
Manager who focuses on collected data and analysing it on desktop. Each of them has their own
functionalities provided by OST. There are also these functionalities which are connected with non-functional
requirements.

Observer Support Tool provides different views for each user. Observer sees name and description of a Trial,
events that have already happened and observation templates which Observer can fill in, whereas Trial
Manager has displayed summary of all observations that have been sent; in addition, the Trial Manager can
even see a summary of observations in time and messages the Trial Manager sent to Observers. The Trial
Manager is responsible for assigning role to the user which can be an Observer or Participant of a Trial.

First, the Observer selects the Trial of interest. The Observer sees its name, description and list with events
that have already happened. The Observer can send an Observation by answering questions that are
connected with events – each new event is a trigger and can change the set of questions.

OST Server does not provide data about events; it is responsible for data exchange but not for preparing
them. It receives data packages about events and simulation time from Test–bed and reacts on triggers.
Events can be also sent directly to users by Trial Manager.

If events are sent from Trial Manager, OST Server publishes them both to Test-bed and to the user. The Trial
Manager not only manages the Trial but also prepares the environment to obtain information that is needed.
The Trial Manager is responsible for projecting questions and question types. Contents and number of
questions are optional, only the form is imposed.

When Test-bed sends package with data about events and time, OST Server notifies Trial Manager and users
about new event. OST Server reacts on triggers and matches proper set of questions, which are sent to Trial
Manager and then published to Observer. When Observer sends his Observations, Trial Manager collects
obtained data and has displayed reports about them and, if needed, can generate it in CSV (i.e. comma
separated values file-format).

Questions have different purposes, which are indicated in Observation Types. The big advantage is getting
better criteria of comparison. Database with observations is more varied but it also connects categories, so
analysing is more efficient. Correctly prepared questions and labels lead to more efficient results and better
conclusions. Questions can also have different answer types such as slider, checkboxes, radio buttons and
text field. With sending an observation, the user can also add some extra material such as additional
description, voice record, picture or location. Each observation refers to a Participant and enables change of
time.

https://github.com/DRIVER-EU/ost
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 41 of 52

Table 5.9: After Action Review

Item Description

Short description

The After-Action Review (AAR) tool provides the possibility to collect
data after a Trial has finished and analyse it. Its main purpose is to
facilitate the evaluation of the trialled solutions, and to help the
participants determine how well they functioned. It collects messages
(exchanged during Trial), observation reports and takes screen-shots
and these can then be deleted again (e.g. due to ethical
considerations).

Who will use it Facilitator

Main functions

The AAR tool will account for:
- Storing relevant data
- Reviewing a Trial completely or parts of it
- Jump to specific point in time

Functions it does not do
The AAR tool will NOT account for: Changing the course of the Trial
afterwards in any way

Links with other
components

CIS, CSS, Scenario Manager, Observer Support Tool: The AAR tool uses
the messages exchanged inside the CIS, CSS, Scenario Manager, and
the observations to provide the review capability.

(Technical) conditions

The Security Service may have to grant the access to all secured topics
to the AAR backend service to give the service the possibility to
collect the data.

Reference to
repository/details

github.com/DRIVER-EU/test-bed-admin [3]

https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#aar
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#aar
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#aar
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/technical-requirements.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/technical-requirements.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/technical-requirements.html#sm
https://driver-eu.gitbooks.io/test-bed-specification/content/technical-requirements.html#ost
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#aar
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#css
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#scenario-manager
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#aar

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 42 of 52

Table 5.10: Security Services

Item Description

Short
description

The Security Services provide access control enforcement on the DRIVER+ Test-bed, as
well as support functions for identity and access management.

Who will use it
Directly: developers, Test-bed administrators. Indirectly: everyone using a solution
connected to the Test-bed.

Main
functions

The Security Services will account for:
- Topic access policy enforcement; i.e. the Admin tool defines an access policy (set of
access rules) per CIS topic, for the topics with confidentiality requirements, and
delegates to the Security Services the enforcement of such policies in CIS.
- SSL client certificate management, for managing (mostly issuing) SSL client
certificates of CIS adapters for each tool connected to the Test-bed; these certificates
are required for Test-bed level client authentication.

Functions it
does not do

The Security Services will not account for:
- The SSL authentication on CIS middleware (Kafka); this will rely on Kafka existing
features, only the trusted CA certificate used in Kafka configuration comes from
Security Services. (Not to be confused with the subsequent authorization phase that
will be handled by Security Services, via Kafka extension.)
- Protection, escrow or recovery of secret/private keys. Tools will have the possibility
to have the Security Services generate key-pairs (with the certificates) for them, for
Test-bed purposes only. However, the Security Services are not responsible for the
protection, escrow or recovery of the generated private (or secret) keys in any way. If
the certificate holder loses them, new ones – with a new certificate - will be
generated.
- Attack detection and/or mitigation.

Links with
other
components

- The Admin Tool consumes the Security Services for topic access policy configuration
and enforcement in CIS.
- The CIS trusts the Security Services CA for client authentication.
- The CIS consumes the Security Services for topic access control.

(Technical)
conditions

- Apache Kafka is needed.
- Host OS should be Ubuntu 16.04 LTS 64-bit (or more recent), RAM >= 4GB, Filesystem
ext4, disk space >= 40 GB, Gigabit LAN connection
- Strongly recommended (but not mandatory): OS/applications should have access to a
TPM preferably; else at least to high-quality entropy for cryptographic pseudo-random
number generation.

Reference to
repository /
details

https://projectdriver.sharepoint.com/:p:/r/sites/DriverPlus/Documents%20partages/SP92%20-
%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-
12.14%20Vienna%20Development%20meeting%20February/Presentations/AccessControl-
SecurityRoadmap-V3.pptx?d=w01f66b178f0143ad9eb3179fc3f8fc18&csf=1&e=VyUcKc [8]

https://projectdriver.sharepoint.com/:w:/r/sites/DriverPlus/Documents%20partages/SP92%20-
%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-
12.14%20Vienna%20Development%20meeting%20February/DRIVER+%20F2F%20Minutes%20-
%20Vienna%20-%202018-02-
12.14.docx?d=w17d0df9098714babbeb746c0015a3a67&csf=1&e=UsdOiV [8]

https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cis
https://projectdriver.sharepoint.com/:p:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/Presentations/AccessControl-SecurityRoadmap-V3.pptx?d=w01f66b178f0143ad9eb3179fc3f8fc18&csf=1&e=VyUcKc
https://projectdriver.sharepoint.com/:p:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/Presentations/AccessControl-SecurityRoadmap-V3.pptx?d=w01f66b178f0143ad9eb3179fc3f8fc18&csf=1&e=VyUcKc
https://projectdriver.sharepoint.com/:p:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/Presentations/AccessControl-SecurityRoadmap-V3.pptx?d=w01f66b178f0143ad9eb3179fc3f8fc18&csf=1&e=VyUcKc
https://projectdriver.sharepoint.com/:p:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/Presentations/AccessControl-SecurityRoadmap-V3.pptx?d=w01f66b178f0143ad9eb3179fc3f8fc18&csf=1&e=VyUcKc
https://projectdriver.sharepoint.com/:w:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/DRIVER+%20F2F%20Minutes%20-%20Vienna%20-%202018-02-12.14.docx?d=w17d0df9098714babbeb746c0015a3a67&csf=1&e=UsdOiV
https://projectdriver.sharepoint.com/:w:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/DRIVER+%20F2F%20Minutes%20-%20Vienna%20-%202018-02-12.14.docx?d=w17d0df9098714babbeb746c0015a3a67&csf=1&e=UsdOiV
https://projectdriver.sharepoint.com/:w:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/DRIVER+%20F2F%20Minutes%20-%20Vienna%20-%202018-02-12.14.docx?d=w17d0df9098714babbeb746c0015a3a67&csf=1&e=UsdOiV
https://projectdriver.sharepoint.com/:w:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/DRIVER+%20F2F%20Minutes%20-%20Vienna%20-%202018-02-12.14.docx?d=w17d0df9098714babbeb746c0015a3a67&csf=1&e=UsdOiV
https://projectdriver.sharepoint.com/:w:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/DRIVER+%20F2F%20Minutes%20-%20Vienna%20-%202018-02-12.14.docx?d=w17d0df9098714babbeb746c0015a3a67&csf=1&e=UsdOiV

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 43 of 52

Table 5.11: Play service

Item Description

Short description

The Play service acts as a mini-scenario editor: it can either publish
one message, or play a sequence of (timed) messages. Besides being
useful for debugging, where a developer can replay a recorder
scenario, it is also useful for testing solutions standalone, where the
Play service can play a simple scenario. The recorded messages can be
obtained using Landoop's Kafka Topics UI, which allows you to
download all messages in a topic to a single JSON file with key-value
messages.

Who will use it Developers; Participants; Solution-owners/evaluators

Main functions
Publish a single recorded message, or a sequence of messages, to the
Test-bed

Functions it does not do Create messages from scrap, or record messages

Links with other
components

It is connected to the Test-bed via an adapter, and it is related to the
message injector

(Technical) conditions
Should run in a Docker environment, can get recorded messages from
a mounted Docker volume

Reference to
repository/details

github.com/DRIVER-EU/kafka-replay-service [9]

Related to this service is the open source csCOP (Common Operational Picture) tool, which can be used as a
COP during a Trial, but which can also be used to test the messages published by simulators and solutions.

Table 5.12: Message Injector

Item Description

Short description

The Message Injector is used for debugging purposes, similar to the
developer application Postman, and it is used to inject messages
manually into the Test-bed in order to generate a certain response.

Who will use it Developers

Main functions
The main functionality is to inject (prepared or on the fly) messages
into the Test-bed for testing purposes

Functions it does not do

Links with other
components

It will use one of the existing adapters, most likely, the Java one, to
send its messages to the Test-bed

(Technical) conditions Must run in a Docker environment

https://github.com/Landoop/kafka-topics-ui/tree/master/docker
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#docker
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#docker
https://github.com/DRIVER-EU/csCOP
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#cop
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#docker

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 44 of 52

Item Description

Reference to
repository/details

Table 5.13: Data services

Item Description

Short description

The Data services are not a single service, but a group of non-
essential, but very practical services to complement the Test-bed.
Their main purpose is to share data to enrich the Trial, such as map
data, height data, census layers, weather information, et cetera.

Who will use it Trial staff

Main functions Share map data, height data, vector data

Functions it does not do Create or edit this data

Links with other
components

Can be used by solutions as well as simulators as a data backend

(Technical) conditions Must run in a Docker environment

Reference to
repository/details

github.com/DRIVER-EU/test-bed-wms-service [10]
github.com/DRIVER-EU/test-bed-mbtiles-service [11]

Related to these data services is the AVRO schemas repository, which contains all the schema's that have
been used (so far).

Table 5.14: Docker-composer

Item Description

Short description

All of the Test-bed's core functionality run inside a Docker
environment (virtual machines). The Docker-composer website allows
you to select the Test-bed components you actually need, and it
creates a dedicated Docker-compose file for you. This file can be
easily run (docker-compose up -d), and the Test-bed is started
using a single command, linking together services and data.

Who will use it
End users wishing to try out a solution, Developers and System
Operators to setup the Test-bed

Main functions Tie many different Docker images together

Functions it does not do Create a Docker image for you

Links with other
components

All Dockerized services, including the Dockerized solutions available in
the Portfolio of Solutions

https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#trial
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#docker
https://github.com/DRIVER-EU/avro-schemas
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#docker
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#docker
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#docker
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#sysops
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#sysops
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#docker
https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#docker

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 45 of 52

Item Description

(Technical) conditions Must run in a Docker environment

Reference to
repository/details

driver-eu.github.io/docker-composer [12]
github.com/DRIVER-EU/docker-composer [13]

https://driver-eu.gitbooks.io/test-bed-specification/content/GLOSSARY.html#docker

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 46 of 52

The previous chapters described the Test-bed’s environment, its high-level use-cases and its components
and their reasons of existence. This chapter looks back at the previous chapters to draw some general
conclusions about the Test-bed and look ahead on the development, implementation and functional review
of the Test-bed. In the third and final section, links between WP923 (i.e. development and implementation
of the Test-bed) and other SPs and WPs are described.

Chapter 4 described the high-level use-cases in which the components must function. The description of the
environment the Test-bed is used in and descriptions of the components provide the specifications that apply
as a “must” (i.e. a requirement) or as a “should” (i.e. not a hard requirement, but a wish that should be
complied to as much as possible). These ‘musts’ and ‘shoulds’ are essential/important for a Test-bed to be
useful and valuable in the Trials yet to come, being both the four Trials and Final Demo within the DRIVER+-
project and future Trials outside this project.

This document does not describe how these requirements and wishes are to be fulfilled. Decisions on which
technology is used to develop the components and why these off-the-shelf, innovative or newly created
technologies are used, as well as choices made in the development of human-software interfaces are
described in the deliverables D923.21, D923.22 and D923.23 Reference Implementation of the Test-bed
(versions 1, 2 and 3).

Whether the specifications documented in this deliverable are fully valid, complete and/or feasible is yet to
be shown. Conclusions about this can only be drawn when the components are developed and used in Trials:
the proof is in the pudding. It is deliberately not foreseen that at this moment these specifications are fully
correct and complete and actually will never fully be. The environments the Test-bed is to be used in are
different per location and are dynamic over time in every potential location: technologies change, opinions
of users differ and experiences grow. This is the main reason this requirements specifications document is a
living document, allowing change when experiences in using the Test-bed are gathered. Furthermore, the
development of the components is also staged, to offer several versions in time with a growing level of
maturity and taking experiences gained during Trials in account (i.e. both on a quality level and on
functionalities and interfaces available).

The Test-bed will be developed in 3 phases:

Version 1 – to be used in Trials 1 and 2

This provides a first version of the CIS, CSS, logging within the CIS and CSS, adapters for solutions and
simulators, Test-bed Admin tool, Observer Support Tool and the Play Service functioning as a first version of
the Scenario Manager and Time Service (see also figure 4.2 with all components of the Test-bed). These
components together form the functional core. The quality level of this version is that of a first prototype
with a focus on functionality and stability needed to execute Trials 1 and 2. Potentially also a first version of
the AAR component is developed. When specifically needed in the Trials, also a data-set of the fictive crisis
environment(s) of Trial 1 or 2 is provided.

After use in Trials 1 and 2, this version is evaluated and the specifications will be updated regarding
experiences gained in the use of the Test-bed. Updates on specifications and design choices will function as
a base for developing version 2.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 47 of 52

Version 2 – to be used in Trials 3 and 4 and Final Demo

This version comprises all components. The components should be reasonably stable with a quality level
surpassing that of a first prototype. It should contain data-sets and basic scenarios that can be used for
effectively connecting and testing (and assessing) solutions and simulators to the CIS and CSS and it should
contain data-sets needed to execute Trials 3 and 4.

After use in Trials 3 and 4, this version is evaluated and the specifications will be updated regarding
experiences gained in the use of the Test-bed. Updates on specifications and design choices will function as
a base for developing version 3.

Version 3 – Final version

This version is the final version of all components. The quality level should surpass that of version 2. It should
contain more data-sets and basic scenarios than available in version 2, to better support effectively
connecting and testing (and assessing) solutions and simulators to the CIS and CSS and executing DRIVER+-
external Trials.

This version comes with a final, online version of the specifications and design choices and documentation
for implementation of the Test-bed outside DRIVER+. As these documents are available online via GitBook,
people can still contribute to them even after the completion of the DRIVER+ project.

All Test-bed’s components are developed in WP923. But this WP has links and even dependencies with other
WPs and SPs. Especially the dependencies provide requirements for the development scheme and quality of
the Test-bed.

WP922 – Evaluation of the Trial Guidance Methodology

The success of the Trials and thereby the Trial Guidance Methodology (i.e. how to prepare, execute and
evaluate them) is under the influence of the successful use of the Test-beds components. For instance, the
Observer Support Tool should make the observation easier and more detailed. So if these observations fail,
the evaluation of a Trial is at risk. On a more operational level, the Observer Support Tool must provide the
functionality to create observation templates complying to requirements for good observations set by the
Trial Guidance Methodology.

T924.1 – Training Module

The Training Module is primarily aimed at people who want to do a Trial. This Training Module will contain a
section explaining the Test-bed and what it can offer (i.e. of which components it consists of and for what
these components are intended to be used). Although there is no hard dependency between WP923 and
T924.1, the Training Module will highly benefit from images or even videos showing interfaces of some
components with understandable, applicable (demo-) Trial content.

SP93 – Development of Portfolio of Solutions and Guidance Tool

Descriptions of the Test-bed’s components should also be taken up in the Portfolio of Solutions. This provides
an accessible entrance to what the Test-bed comprises of, also for people outside DRIVER+.

The Guidance Tool should contain forms to enter scenario information and describe injects in these
scenarios. The template of injects should be aligned with the definition of an inject in the Scenario Manager
and the CSS.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 48 of 52

SP94 and T924.2 – support to and execution of Trials and Final Demo

The successful execution of Trials of course is highly dependent on timely availability of the components
needed in each Trial. The quality of these components needs to be fit-for-use. Fit-for-use means the quality
of a component should not jeopardize the success of the Trial (e.g. should not cause a crash of the Test-bed
or a Solution), but it does not mean that in a Trial every component must have the quality level of a final
version.

For an effective (technical) support to Trials in T924.2, it is essential that the Test-bed can be easily (partly)
implemented at a Trial Owner’s location, but also at Solution providers for linking up their Solution to the
Test-bed (if needed and possible). The Docker environment supports this easy installation, but this
dependency also requires that each component is well documented and potential bugs encountered can be
quickly pinpointed and resolved.

SP94 also deals with the evaluation of the TGM, the Test-bed and the supportive tools GT, TAP and PoS.
Further development of the Test-bed is thus partly dependent on the outcome of the Test-bed’s evaluation
after each Trial.

WP954 – Test-bed’s sustainability

As already described, the Test-bed must be developed such that it can also be used outside/after DRIVER+.
The development and implementation of the Test-bed has a strong link with the sustainability tasks in
WP954. It can even be stated that the sustainability of the Test-bed and thereby results of the DRIVER+
project (highly) depends on development choices made in the development of the components.

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 49 of 52

1. Online living version of this document D923.11 on GitBook:
driver-eu.gitbooks.io/Test-bed-specification/content/

2. Agile software development Wikipedia definition:
en.wikipedia.org/wiki/Agile_software_development

3. Test-bed manager (Admin tool) software code repository:
github.com/DRIVER-EU/test-bed-admin

4. Scenario Manager software code repository:
github.com/DRIVER-EU/scenario-editor

5. Time Service software code repository:
github.com/DRIVER-EU/test-bed-time-service

6. Observer Support Tool software code repository:
github.com/DRIVER-EU/ost

7. Observer Support Tool detailed specifications and design:
driver-eu.gitbooks.io/specification-of-the-online-observer-support-tool

8. Security services design decisions:
https://projectdriver.sharepoint.com/:p:/r/sites/DriverPlus/Documents%20partages/SP92%20-
%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-
12.14%20Vienna%20Development%20meeting%20February/Presentations/AccessControl-SecurityRoadmap-
V3.pptx?d=w01f66b178f0143ad9eb3179fc3f8fc18&csf=1&e=VyUcKc
https://projectdriver.sharepoint.com/:w:/r/sites/DriverPlus/Documents%20partages/SP92%20-
%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-
12.14%20Vienna%20Development%20meeting%20February/DRIVER+%20F2F%20Minutes%20-
%20Vienna%20-%202018-02-12.14.docx?d=w17d0df9098714babbeb746c0015a3a67&csf=1&e=UsdOiV

9. Play service software code repository:
github.com/DRIVER-EU/kafka-replay-service

10. WMS service software code repository:
github.com/DRIVER-EU/test-bed-wms-service

11. MBtiles service software code repository:
github.com/DRIVER-EU/test-bed-mbtiles-service

12. DRIVER+ Test-bed Docker composer website:
driver-eu.github.io/docker-composer

13. DRIVER+ Test-bed Docker environment software code repository:
github.com/DRIVER-EU/docker-composer

https://github.com/DRIVER-EU/ost
https://projectdriver.sharepoint.com/:p:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/Presentations/AccessControl-SecurityRoadmap-V3.pptx?d=w01f66b178f0143ad9eb3179fc3f8fc18&csf=1&e=VyUcKc
https://projectdriver.sharepoint.com/:p:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/Presentations/AccessControl-SecurityRoadmap-V3.pptx?d=w01f66b178f0143ad9eb3179fc3f8fc18&csf=1&e=VyUcKc
https://projectdriver.sharepoint.com/:p:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/Presentations/AccessControl-SecurityRoadmap-V3.pptx?d=w01f66b178f0143ad9eb3179fc3f8fc18&csf=1&e=VyUcKc
https://projectdriver.sharepoint.com/:p:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/Presentations/AccessControl-SecurityRoadmap-V3.pptx?d=w01f66b178f0143ad9eb3179fc3f8fc18&csf=1&e=VyUcKc
https://projectdriver.sharepoint.com/:w:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/DRIVER+%20F2F%20Minutes%20-%20Vienna%20-%202018-02-12.14.docx?d=w17d0df9098714babbeb746c0015a3a67&csf=1&e=UsdOiV
https://projectdriver.sharepoint.com/:w:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/DRIVER+%20F2F%20Minutes%20-%20Vienna%20-%202018-02-12.14.docx?d=w17d0df9098714babbeb746c0015a3a67&csf=1&e=UsdOiV
https://projectdriver.sharepoint.com/:w:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/DRIVER+%20F2F%20Minutes%20-%20Vienna%20-%202018-02-12.14.docx?d=w17d0df9098714babbeb746c0015a3a67&csf=1&e=UsdOiV
https://projectdriver.sharepoint.com/:w:/r/sites/DriverPlus/Documents%20partages/SP92%20-%20Testbed/WP923%20-%20Testbed%20infrastructure/Meetings/2018-02-12.14%20Vienna%20Development%20meeting%20February/DRIVER+%20F2F%20Minutes%20-%20Vienna%20-%202018-02-12.14.docx?d=w17d0df9098714babbeb746c0015a3a67&csf=1&e=UsdOiV

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 50 of 52

14. DRIVER+ (2018). D922.21 - Trial guidance methodology and guidance tool specifications (version 1)

15. DRIVER+ (2018). D923.21 - First release of the Test-bed reference implementation

16. CRISIS-project (2010 – 2013) coordinated by Middlesex University, which received funding from the
European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement
n° FP7-242474

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 51 of 52

In order to have a common understanding within the DRIVER+ project and beyond and to ensure the use of
a common language in all project deliverables and communications, a terminology is developed by making
reference to main sources, such as ISO standards and UNISDR. This terminology is presented online as part
of the Portfolio of Solutions and it will be continuously reviewed and updated5. The terminology is applied
throughout the documents produced by DRIVER+. Each deliverable includes an annex as provided
hereunder, which holds an extract from the comprehensive terminology containing the relevant DRIVER+
terms for this respective document.

Terminology Definition Comment

Crisis
Management

Holistic management process that identifies
potential impacts that threaten an organisation and
provides a framework for building resilience, with
the capability for an effective response that
safeguards the interests of the organisation’s key
interested parties, reputation, brand and
value­creating activities, as well as effectively
restoring operational capabilities.

Note to entry: Crisis
management also involves the
management of preparedness,
mitigation, response, and
continuity or recovery in the
event of an incident, as well as
management of the overall
programme through training,
rehearsals and reviews to
ensure the preparedness,
response and continuity plans
stay current and up-to-date.

Evaluation Process of estimating the effectiveness, efficiency,
utility and relevance of a service or facility

Observation Method of data collection in which the situation of
interest is watched and the relevant facts, actions
and behaviours are recorded [observer participant
who witnesses the exercise while remaining
separate from exercise activities]

Portfolio of
Solutions
(PoS)

A database driven website that documents the
available Crisis Management solutions. The PoS
includes information on the experiences with a
solution (i.e. results and outcomes of Trials), the
needs it addresses, the type of practitioner
organisations that have used it, the regulatory
conditions that apply, societal impact consideration,
a glossary, and the design of the Trials.

Scenario Pre-planned storyline that drives an exercise; the
stimuli used to achieve exercise objectives [pre-
planned storyline that drives an exercise, as well as
the stimuli used to achieve exercise project
performance objectives]

5 Until the Portfolio of Solutions is operational, the terminology is presented in the DRIVER+ Project Handbook and access can be
requested by third parties by contacting coordination@projectdriver.eu.

mailto:coordination@projectdriver.eu

DRIVER+ project  D923.11 - Functional specification of the Test-bed infrastructure  March 2018 (M47)

Page 52 of 52

Terminology Definition Comment

Test-bed The software tools, middleware and methodology to
systematically conduct Trials and evaluate solutions
within an appropriate environment. An "appropriate
environment" is a testing environment (life and/or
virtual) where the trialling of solutions is carried out
using a structured, all-encompassing and mutual
learning approach. The Test-bed can enable existing
facilities to connect and exchange data, providing a
pan-European arena of virtually connected facilities
and crisis labs where users, providers, researchers,
policy makers and citizens jointly and iteratively can
progress on new approaches or solutions to
emerging needs.

Training Activities designed to facilitate the learning and
development of knowledge, skills, and abilities, and
to improve the performance of specific tasks or
roles.

Trial An activity for systematically finding and testing
valuable solutions for current and emerging needs in
such a way that practitioners can do this in a
pragmatic yet systematic way.

Trial Action
Plan (TAP)

The main Trial planning document, facilitating
collaborative planning and supporting combined
execution. It covers all areas related to the Trial
organization and will be used to record efforts,
circulate decisions and assess progress.

Trial Guidance
Methodology

A structured approach from designing a Trial to
evaluating the outcomes and identifying lessons
learned.

