


Table	of	Contents
About

Executive	summary

1.	Introduction

2.	Test-bed	description

3.	Test-bed	for	Trial	owners

4.	Test-bed	for	developers	&	sysops

5.	Test-bed	design

Acronyms

Annex	1

List	of	Figures

2



Project	information

Project	Acronym: DRIVER+

Project	Full	Title: Driving	Innovation	in	Crisis	Management	for	European
Resilience

Grant	Agreement: 607798

Project	Duration: 72	months	(May	2014	-	April	2020)

Project	Technical
Coordinator: TNO

Contact: coordination@projectdriver.eu

Document	information

Document
Status: Final

Document
Title: D923.21	Test-bed	reference	implementation

Document
Nature: Report	(R)

Dissemination
Level: Public	(P)

Due	Date: 31	March,	2018

Submission
Date: 03/04/2018

Sub-Project
(SP): SP92	-	Test-bed

Work	Package
(WP): WP923	–	Test-bed	infrastructure

Document
Leader: TNO

File	Name: test-bed-design.pdf,	latest	version	available	online	at	driver-
eu.gitbooks.io/test-bed-specification

About

3

https://driver-eu.gitbooks.io/test-bed-specification


DISCLAIMER
The	opinion	stated	in	this	report	reflects	the	opinion	of	the	authors	and	not	the	opinion	of	the
European	Commission.	All	intellectual	property	rights	are	owned	by	the	DRIVER+
consortium	members	and	are	protected	by	the	applicable	laws.	Except	where	otherwise
specified,	all	document	contents	are:	“©DRIVER+	Project	-	All	rights	reserved”.
Reproduction	is	not	authorised	without	prior	written	agreement.

The	commercial	use	of	any	information	contained	in	this	document	may	require	a	license
from	the	owner	of	that	information.

All	DRIVER+	consortium	members	are	also	committed	to	publish	accurate	and	up	to	date
information	and	take	the	greatest	care	to	do	so.	However,	the	DRIVER+	consortium
members	cannot	accept	liability	for	any	inaccuracies	or	omissions	nor	do	they	accept	liability
for	any	direct,	indirect,	special,	consequential	or	other	losses	or	damages	of	any	kind	arising
out	of	the	use	of	this	information.

Revision	table
Issue Date Comment Author

V0.1 01/02/2018 Initial	draft
Erik	Vullings
(TNO,	WP923
leader)

V0.2 21/03/2018 Review	process	started Erik	Vullings

V0.3 26/03/2018 Reviews	from	Alessandro	Annunziato	(JRC)
and	Héctor	Naranjo	(GMV)	processed Erik	Vullings

V0.4 28/03/2018
Reviews	from	Chiara	Fonio	(JRC),	Laurent
Dubois	(Thales)	and	Peter	Petiet	(TNO)
processed

Erik	Vullings

V0.5 29/03/2018 Reviews	from	Marcel	van	Berlo	(TNO)
processed Erik	Vullings

V0.6 03/04/2018 Final	check	and	approval	for	submission
Peter	Petiet,
Project	Director
(TNO)

V1.0 03/04/2018 Submission	to	the	EC Francisco	Gala
(ATOS)

About

4



The	DRIVER+	project
Current	and	future	challenges	due	to	increasingly	severe	consequences	of	natural	disasters
and	terrorist	threats	require	the	development	and	uptake	of	innovative	solutions	that	are
addressing	the	operational	needs	of	practitioners	dealing	with	Crisis	Management.
DRIVER+	(Driving	Innovation	in	Crisis	Management	for	European	Resilience)	is	a	FP7	Crisis
Management	demonstration	project	aiming	at	improving	the	way	capability	development	and
innovation	management	is	tackled.	DRIVER+	has	three	main	objectives:

1.	 Develop	a	pan-European	Test-bed	for	Crisis	Management	capability	development:
Develop	a	common	guidance	methodology	and	tool	(supporting	Trials	and	the
gathering	of	lessons	learned.
Develop	an	infrastructure	to	create	relevant	environments,	for	enabling	the	trialling
of	new	solutions	and	to	explore	and	share	Crisis	Management	capabilities.
Run	Trials	in	order	to	assess	the	value	of	solutions	addressing	specific	needs	using
guidance	and	infrastructure.
Ensure	the	sustainability	of	the	pan-European	Test-bed.

2.	 Develop	a	well-balanced	comprehensive	Portfolio	of	Crisis	Management	Solutions:
Facilitate	the	usage	of	the	Portfolio	of	Solutions.
Ensure	the	sustainability	of	the	Portfolio	of	Solutions.

3.	 Facilitate	a	shared	understanding	of	Crisis	Management	across	Europe:
Establish	a	common	background.
Cooperate	with	external	partners	in	joint	Trials.
Disseminate	project	results.

To	achieve	these	objectives,	five	Subprojects	(SPs)	have	been	established.	SP91	Project
Management	is	devoted	to	consortium	level	project	management,	and	it	is	also	in	charge	of
the	alignment	of	DRIVER+	with	external	initiatives	on	crisis	management	for	the	benefit	of
DRIVER+	and	its	stakeholders.	In	DRIVER+,	all	activities	related	to	societal	impact
assessment	(from	the	former	SP8	and	SP9)	are	part	of	SP91	as	well.	SP92	Test-bed	will
deliver	a	guidance	methodology	and	guidance	tool	supporting	the	design,	conduct	and
analysis	of	Trials	and	will	develop	a	reference	implementation	of	the	Test-bed.	It	will	also
create	the	scenario	simulation	capability	to	support	execution	of	the	Trials.	SP93	Solutions
will	deliver	the	Portfolio	of	Solutions	which	is	a	database	driven	web	site	that	documents	all
the	available	DRIVER+	solutions,	as	well	as	solutions	from	external	organisations.	Adapting
solutions	to	fit	the	needs	addressed	in	Trials	will	be	done	in	SP93.	SP94	Trials	will	organize
four	series	of	Trials	as	well	as	the	final	demo.	SP95	Impact,	Engagement	and
Sustainability,	oversees	communication	and	dissemination,	and	also	addresses	issues
related	to	improving	sustainability,	market	aspects	of	solutions,	and	standardization.

About

5



The	DRIVER+	Trials	and	the	Final	Demonstration	will	benefit	from	the	DRIVER+	Test-bed,
providing	the	technological	infrastructure,	the	necessary	supporting	methodology	and
adequate	support	tools	to	prepare,	conduct	and	evaluate	the	Trials.	All	results	from	the	Trials
will	be	stored	and	made	available	in	the	Portfolio	of	Solutions,	being	a	central	platform	to
present	innovative	solutions	from	consortium	partners	and	third	parties	and	to	share
experiences	and	best	practices	with	respect	to	their	application.	In	order	to	enhance	the
current	European	cooperation	framework	within	the	Crisis	Management	domain	and	to
facilitate	a	shared	understanding	of	Crisis	Management	across	Europe,	DRIVER+	will	carry
out	a	wide	range	of	activities,	whose	most	important	will	be	to	build	and	structure	a
dedicated	community	of	practice	in	crisis	management,	thereby	connecting	and	fostering	the
exchange	on	lessons	learnt	and	best	practices	between	Crisis	Management	practitioners	as
well	as	technological	solution	providers.

About

6



Executive	Summary
The	Test-bed	reference	implementation	lies	at	the	heart	of	the	Trialling	environment	of	the
DRIVER+	project	(see	Figure	1).	It	provides	an	open	source	technical	backbone	to	perform
Trials	or	exercises	in	a	methodical	and	structured	way	by	offering	practitioners	a	suite	of	free
software	tools.	This	document	discusses	the	Test-bed's	usage	and	design,	and	therefore	it	is
expected	that	the	reader	has	at	least	some	technical	background.	In	DRIVER+	deliverable
D923.11	"Functional	specification	of	the	Test-bed",	the	requirements	of	the	Test-bed	are
documented.	These	requirements	serve	as	basis	for	the	design	of	the	first	release	of	the
DRIVER+	Test-bed	reference	implementation	as	described	in	this	deliverable	D923.21.

The	trial-oriented	environment	developed	in	sub-project	92	(Test-bed)	of	DRIVER+	is
conceived	and	designed	to	allow	systematic	testing	of	solutions	in	realistic	but	non-
operational	contexts	(namely,	in	Trials)	to	help	practitioners	in	assessing	solutions	that	can
drive	innovation	(changes)	before	adopting	them.	See	also	deliverable	D922.21,	"Trial
guidance	methodology	and	guidance	tool	specifications	(version	1)".

The	purpose	of	conducting	Trials	in	DRIVER+	is	to	find	out	if	and	how	some	innovative
solutions	can	help	resolve	the	needs	of	Crisis	Management	practitioners.

Figure	1.	PTME	paradigm	applied	to	DRIVER+.

The	basic	problem	that	the	Test-bed	reference	implementation	tries	to	solve	is	how	to
connect	different	solutions,	which	solve	a	particular	Crisis	Management	(CM)	gap,	to:

Each	other:	since	no	single	application	can	solve	all	CM	gaps,	they	need	to	work
together	by	sharing	information.
One	or	more	simulators:	since	during	a	Trial,	you	cannot	start	a	real	incident,	there
needs	to	be	a	way	to	simulate	a	realistic	incident.

Executive	summary

7

https://driver-eu.gitbooks.io/test-bed-specification


The	main	design	decision	is	to	connect	solutions	to	a	so-called	Common	Information	Space
(CIS),	simulators	to	a	Common	Simulation	Space	(CSS),	and	to	have	gateway	services	in
between	that	selectively	allow	some	information	to	pass	between	the	two	spaces	(see	Figure
2).	These	spaces	can	be	public	or	private,	and	allow	for	applications	to	write	messages	to	a
topic	of	interest,	or	read	those	messages.	Although	both	spaces	are	comparable	in	that	they
share	well	structured	messages	(using	Apache	AVRO)	over	a	popular	open	source
distributed	messaging	system,	Apache	Kafka,	the	separation	allows	for	a	better	control	of
the	message	flow,	and	for	replacing	parts	with	an	alternative	implementations	if	needed.

In	addition,	several	adapters	are	created	to	connect	solutions	and	simulators	to	the	CIS	and
CSS:	besides	allowing	users	of	the	Test-bed	to	choose	an	adapter	in	their	favourite
programming	language,	and	share	messages,	it	also	provides	a	common	interface	for
configuration,	heartbeat	messages,	and	security.	Currently,	adapters	in	Java,	C#,
JavaScript/TypeScript	and	REST	are	available,	and	a	Python	adapter	is	planned	for	the	next
release.

Figure	2.	CIS	and	CSS.

Around	this	core	functionality,	additional	tools	are	developed	that	facilitate	the	usage	of	this
environment	(see	Figure	3):

Administrative	tools:	Is	everyone	up-and-running,	secure,	and	connected	to	the	right
information	topics?
Evaluation	tools:	What	did	we	observe	during	the	Trial,	and	what	implications	does	this
have	during	the	After-Action	Review.

Executive	summary

8



Scenario	tools:	To	create	an	interesting	scenario	that	triggers	the	participants	and
solutions	in	the	right	way.
Support	tools:	For	testing	and	debugging,	for	creating	your	personalized	Test-bed
environment,	but	also	to	share	common	data	such	as	map	layers	or	census	data.

Figure	3.	Test-bed	reference	implementation.

The	Test-bed	will	be	delivered	in	3	versions.	Version	1	is	intended	for	use	in	Trials	1	and	2,
and	consists	of	a	limited	number	of	components	(i.e.	Scenario	Manager	and	AAR	not
included	and	other	components	in	first	prototype	quality).	Version	2	is	to	be	used	in	Trials	3
and	4	and	the	Final	Demo	and	comes	with	all	components	with	a	quality	level	surpassing
that	of	a	first	prototype.	It	should	contain	data-sets	and	basic	scenarios	that	can	be	used	for
effectively	implementing	and	testing	the	Test-bed.	The	final	version,	Version	3,	should	have
an	even	better	quality	based	on	experiences	gathered	from	the	use	of	the	Test-bed	in	the
executed	Trials.	All	versions	are	already	available	open-source	(under	a	liberal	MIT	license)
on	github.com/DRIVER-EU.	The	subsequent	updated	Test-bed	reference	implementations
are	documented	in	D923.21,	D923.22	and	D923.23	-	Reference	Implementations	of	the
Test-bed	(versions	1/2/3	resp.).

This	document	is	a	living	document,	and	the	latest	version	is	available	online	at
www.gitbook.com/book/driver-eu/test-bed-design	or	can	be	downloaded	as	PDF	or	ebook
(epub	or	mobi)	 .1

1

Executive	summary

9

https://github.com/DRIVER-EU
https://www.gitbook.com/book/driver-eu/test-bed-design/details


.	Since	the	printed	version	is	automatically	generated	from	the	online	book,	the
template	is	slightly	different	from	a	Word-based	version.	It	starts	at	a	high-level	with	a
description	of	the	main	components	of	the	Test-bed	reference	implementation.	Next,
chapters	are	dedicated	to	the	main	users	of	this	environment,	practitioners	and
developers/ICT	administrators.	And	it	concludes	with	a	brief	explanation	of	the	main
design	decisions.	↩

1

Executive	summary

10



1.	Introduction
In	the	Crisis	Management	(CM)	domain,	practitioners	need	to	be	prepared	for	the
unexpected:	based	on	past	experience	and	the	local	incidents	they	had	to	deal	with,	they
develop	a	feeling	for	the	things	that	did	not	go	so	well.	As	with	most	incidents	many	lives	are
involved,	they	are	continuously	looking	for	solutions	to	improve	their	response	and
preparedness.

Within	the	DRIVER+	project,	a	Trial	Guidance	Methodology	(TGM,	deliverable	D922.21	-
Trial	guidance	methodology	and	guidance	tool	specifications	(version	1))	and	tools	are
developed	to	help	resolve	the	needs	of	practitioners	through	a	systematic	and	pragmatic
approach.	The	Test-bed	infrastructure	is	a	suite	of	software	tools	and	services	that	enables
solutions	and	simulators	in	the	Crisis	Management	(CM)	domain	to	easily	exchange
information	(see	Figure	4).	This	allows	end-users	in	the	CM	domain	to	Trial	solutions,	and
see	if	they	address	their	gaps.	Additionally,it	can	be	used	to	support	training	exercises	as
well.

The	simplified	DRIVER+	TGM	process	to	Trial	solutions	is	like	this:

1.	 PREPARATION	PHASE:

The	operational	issues	practitioners	experience	are	matched	with	one	or	more	of
the	well-known	crisis	management	gaps,	as	experienced	by	many	of	their
colleagues,	e.g.	How	to	get	a	real-time	and	dynamic	overview	of	the	position	of	all
personnel?.
These	gaps,	in	turn,	are	still	too	generic	to	address,	and	are	made	more	specific,
leading	to	so-called	'research	questions',	e.g.	Which	Situational	Awareness-
increasing	solution	fits	best	with	our	mode	of	operation?
Existing	solutions	are	reviewed	and	selected.	Some	solutions	can	even	be	tried	out
standalone	using	the	Test-bed	and	an	existing	mini-scenario.
Based	on	the	selected	solutions,	gaps	and	research	questions,	a	data	collection
plan	is	developed:	what	kind	of	data	does	the	Trial	need	to	generate	to	enable	a
valid	evaluation	at	the	end	of	the	Trial.
A	scenario	is	developed	that	puts	these	solutions	to	the	test.	This	includes	selecting
and	connecting	simulators	of	a	fictive	incident,	e.g.	a	flooding	simulator,	and	other
simulators	to	create	a	realistic	environment,	e.g.	a	traffic	simulator.
Selected	solutions	and	existing	legacy	systems	are	connected	to	the	Test-bed,	so
they	can	receive	input	from	the	simulators	as	well	as	each	other.

2.	 EXECUTION	PHASE:

1.	Introduction

11

http://www.driver-project.eu


The	Test-bed	is	setup,	all	simulators	and	solutions	are	connected,	data	collection	is	in
place,	and	a	scenario	can	be	run	(executed).	Before	the	actual	Trial,	several	dry	runs
are	performed,	partially	for	testing	the	setup,	and	partially	for	training	the	participants	in
using	the	solutions.	This	phase	ends	when	the	Trial	is	executed	and	observed.

3.	 EVALUATION	PHASE:

Based	on	the	recorded	observations	and	collected	data	(screenshots	of	running
applications,	messages	sent,	actions	and	decisions	taken)	during	the	Trial,	the	solutions
are	evaluated	with	the	participants,	leading	to	a	good	appreciation	of	how	the	selected
solutions	have	contributed	to	solving	the	problems.

Figure	4.	Test-bed	environment.

1.1	Aim
The	Test-bed	supports	practitioners	by	providing	an	environment	in	which	they	can	easily
Trial	new	solutions	and	run	exercises.	This	has	several	implications	for	the	test-bed:

Evaluation	support:	As	we	are	testing	and	evaluating	new	solutions,	the	Test-bed
provides	tools	for	observers	and	After-Action	Review.

1.	Introduction

12



Simulation	support:	Due	to	the	nature	of	the	crisis	management	domain,	most
solutions	cannot	be	properly	tested	outside	an	actual	crisis	situation.	As	starting	a
flooding	or	burning	a	forest	is	clearly	not	an	option	to	test	the	solutions,	the	crisis
incident	needs	to	be	faked	or	simulated.	The	same	applies	to	expected	reactions	of	the
environment:	people	panicking,	traffic	jams,	etc.	must	be	simulated	too.
Execution	support:	As	the	solutions	are	typically	tested	within	an	incident	scenario,	the
Test-bed	provides	tools	to	create	and	execute	scenario's.
Development	support:	To	connect	new	solutions	and	simulators	to	the	Test-bed,	the
Test-bed	provides	adapters	in	several	popular	languages	and	several	debugging	tools
and	services.	Also,	to	check	whether	everything	is	up-and-running	smoothly,	it	also	has
an	admin	tool.

1.2	Scope	of	the	Test-bed
This	document	limits	its	scope	to	the	core	Test-bed	design,	more	specifically,	the	design	of
the	Test-bed's	reference	implementation,	which	is	an	implementation	of	the	Test-bed
specification	(see	Figure	5):	it	thereby	provides	an	overview	of	the	most	important
components	of	the	Test-bed,	how	they	work	together,	and	how	they	can	be	used	by	different
stakeholders.

The	CM	solutions	and	simulators	that	supplement	the	Test-bed,	however,	are	not	part	of	the
Test-bed.	The	simulators'	function	is	to	simulate	an	incident,	and	the	reactions	that	may
occur	in	a	real	world,	since	we	cannot	unleash	incidents	like	a	flooding	and	earthquakes	on
the	real	world.	The	solutions	are	the	actual	tools	that	are	trialled	and	evaluated,	and
measured	whether	they	actually	do	solve	a	CM	gap.	These	solutions	are	fed	with	the
simulator's	output,	and	perhaps	the	output	of	other	solutions,	so	end	users	can	observe	and
evaluate	their	contribution	during	a	fictive	incident.

1.	Introduction

13

https://driver-eu.gitbooks.io/test-bed-specification


Figure	5.	Scope	of	the	test-bed.

1.3	Organisation	of	the	Document
This	is	a	live	document,	and	the	latest	version	can	always	be	found	online	at
www.gitbook.com/book/driver-eu/test-bed-design.	It	is	organised	as	follows:

The	Test-bed	description	provides	a	general	overview	of	the	Test-bed	reference
implementation.	It	is	an	easy	to	read	chapter	which	requires	little	technical	knowledge,	and	is
aimed	at	anyone	who	has	to	work	with	the	Test-bed.

The	chapter,	Test-bed	for	Trial	owners,	is	specifically	aimed	at	Trial	owners	and	practitioners,
and	discusses	the	functionality	the	Test-bed	offers	to	them.	And	also,	what	it	does	not	offer.

In	the	chapter,	Test-bed	for	developers	and	sysops,	the	technical	side	of	the	Test-bed	is
explained.	Specifically:	how	to	manage	a	Test-bed	as	a	sysop,	or	how	to	connect	a	solution
or	simulator	to	it	as	a	developer.

The	final	chapter	offers	more	details	about	the	Test-bed	design,	and	provides	an	explanation
for	the	main	design	decisions.	The	intended	audience	are	developers	that	need	a	deeper
understanding	of	the	Test-bed	and	its	underlying	architecture,	e.g.	for	supplementing	the
Test-bed	or	for	offering	a	deeper	integration	of	their	solution.

1.4	What's	new

1.	Introduction

14

https://www.gitbook.com/book/driver-eu/test-bed-design


Version	1	(2018-03-31)

This	is	the	first	version	of	D923.21	Test-bed	reference	implementation	v1.	It	matches	the
release	version	of	the	software	applications	as	available	on	GitHub:	github.com/DRIVER-
EU.	Two	future	releases	of	this	document	are	planned,	v2	and	v3,	and	the	major	changes
between	the	different	documents	will	be	described	here.	In	the	mean	time,	this	online
documentation	is	continuously	updated,	so	it	matches	the	current	state	of	the	Test-bed.

1.	Introduction

15

https://github.com/DRIVER-EU


2.	Test-bed	description
The	Test-bed	supports	practitioners	by	providing	an	environment	in	which	they	can	easily
Trial	new	solutions	and	run	exercises.	In	this	chapter,	the	main	components	of	the	Test-bed
are	explained	(see	Figure	6).

Figure	6.	Explanation	of	the	Test-bed	components.

2.1	Core
The	Test-bed	must	support	the	exchange	of	information	between	distributed	solutions,
simulators	and	tools.	Information	such	as	the	location	of	an	incident,	alert	messages,	or	the
locations	of	vehicles.	Comparable	to	people	exchanging	information	via	email,	chat	or	twitter,
the	Test-bed	exchanges	information	using	the	open-source	messaging	system	Apache
Kafka	from	the	Apache	organisation.

As	it	is	assumed	that	the	systems	that	are	connected	via	the	Test-bed	are	either	software
systems,	or	hardware	with	a	software	interface,	the	Test-bed's	support	for	non-technical
systems	is	limited:	typically,	support	will	be	limited	to	the	evaluation	tools,	such	as	the
Observer	Support	tool	and	After-Action	Review	tool.

2.	Test-bed	description

16

https://kafka.apache.org
http://www.apache.org/


Adapters

Being	widely	used	worldwide,	Kafka	has	connectors	for	most	programming	languages,	so
software	applications	can	easily	connect	to	it.	While	connected	to	Kafka,	and	therefore	the
Test-bed,	the	application	can	send	and	receive	messages.	When	you	want	to	receive	a
message,	you	subscribe	to	a	topic	of	interest:	thereafter,	you	get	all	the	messages	that	are
sent	instantaneously	until	you	end	your	subscription.	Optionally,	you	can	even	get	messages
that	were	sent	in	the	past,	or	while	you	were	offline,	as	Kafka	logs	all	messages	for	a	pre-set
time.	To	publish	a	message,	you	just	need	to	send	it	to	your	topic	of	interest.

For	example,	to	send	a	CAP	(Common	Alerting	Protocol)	message	to	all	interested	parties,
you	use	a	connector	to	send	your	CAP	message	to	the	'cap'	topic.	Every	tool	that	has
subscribed	to	the	'cap'	topic	will	get	it	right	away.

The	default	Kafka	connectors	are	lacking	certain	features	that	are	useful	in	a	Test-bed
environment,	so	some	existing	connectors	have	been	extended.	These	extended	connectors
are	called	adapters,	and	the	Test-bed	currently	maintains	four	of	them:	in	Java,	C#,
JavaScript/TypeScript	and	REST.	Note	that	the	REST	adapter	is	a	simple	interface	so	any
application	can	send	and	receive	messages	using	basic	internet	commands.

Adapters	extend	regular	Kafka	connectors	with:

Heartbeat	signals:	Before	you	can	start	a	Trial,	every	solution,	simulator	and	tool	needs
to	be	up-and-running.	Therefore	every	adapter	transmits	a	heartbeat	signal	every	5
seconds	to	inform	others	it	is	online.
Logging:	Besides	being	online,	it	is	also	important	to	know	that	each	connected	service
is	running	as	expected,	so	each	adapter	offers	the	option	to	log	warnings/errors	to	the
Test-bed	as	well.
Configuration	options:	The	adapter	can	inform	others	to	what	topics	it	subscribes	and
publishes.	In	addition,	this	can	be	configured	too	externally.
Time:	A	Trial	scenario	typically	will	not	run	at	real-time,	so	the	adapter	needs	to	share
the	fictive	simulation	time.	In	addition,	it	shares	the	simulation	speed,	as	we	may	be
running	slower	or	faster	than	real-time,	as	well	as	the	simulation	state.

Messages

As	software	applications	need	to	understand	the	messages	they	receive,	the	Test-bed	has	to
assure	that	every	message	that	is	sent	complies	with	the	expected	format	(syntax).	For
example,	when	a	solution	wants	to	share	the	location	of	a	vehicle	or	the	value	of	a	sensor,
you	probably	need	to	capture	the	vehicle's	or	sensor's	location,	as	well	as	its	type,	speed	or

2.	Test-bed	description

17

https://github.com/DRIVER-EU/java-test-bed-adapter
https://github.com/DRIVER-EU/csharp-test-bed-adapter
https://github.com/DRIVER-EU/node-test-bed-adapter
https://github.com/DRIVER-EU/test-bed-rest-service


sensor	value.	Then	it	is	important	to	know	that	the	type	will	be	one	out	of	a	list	of
possibilities,	that	the	location	is	specified	using	two	numbers,	and	that	the	speed	or	sensor
value	is	a	number	too.

To	capture	this	information,	the	common	solution	is	to	specify	it	in	a	so-called	schema.	The
Test-bed	enforces	this	too,	and	it	uses	the	open	Apache	AVRO	schema	format.

Dealing	with	standards:	In	the	CM	domain,	several	standards	exists,	such	as	CAP,	EDXL
or	EMSI.	They	are	represented	using	XML,	a	textual	representation	of	a	message	that	is
easily	readable	by	computers.	A	recurring	problem	with	all	standards,	however,	is	that	they
rarely	represent	all	the	information	you	would	like	to	share.	This	often	leads	to	adding	new
fields,	or,	even	worse,	re-purposing	existing	fields.	Additionally,	not	every	organisation	uses
it	in	the	same	way.	For	Trialling	new	solutions,	the	Test-bed	needs	to	be	flexible	and	exact,
and	that's	why	the	Test-bed	does	support	these	standards,	but	converted	to	the	AVRO
format.	In	that	way,	every	connected	solution	or	simulator	will	exactly	know	what	to	expect
when	reading	a	message,	as	new	fields	can	be	easily	added	in	a	robust	way.

CIS	and	CSS

At	the	heart	of	the	Test-bed,	i.e.	its	core,	all	messages	are	exchanged	using	Apache	Kafka.
Conceptually,	though,	we	distinguish	between	a	Common	Information	Space	(CIS)	and	a
Common	Simulation	Space	(CSS).	The	CIS	is	where	the	solutions	exchange	information,
and	the	CSS	is	for	simulators.	Typically,	the	CIS	will	exchange	fewer	messages	during	a
Trial,	and	time	synchronisation	is	simple.	In	the	CSS,	many	more	messages	are	generated,
e.g.	the	location	of	all	vehicles	may	be	updated	every	second.	Simulators	may	need	to	be	in
sync	with	others,	e.g.	a	flooding	simulator	may	flood	an	area,	and	at	the	same	time,	the
traffic	in	the	same	area	should	experience	the	flood	too.

For	simple	Trials,	the	CSS	and	CIS	will	run	in	the	same	Test-bed.	In	case	the	performance
suffers,	it	may	be	necessary	to	split	the	CSS	and	CIS	over	two	test-beds	that	are
interconnected.

Note,	though,	that	the	adapters	can	be	used	to	connect	to	the	CIS	as	well	as	the	CSS,	so
there	is	no	difference	between	them.

In	rare	cases,	the	CSS	may	be	replaced,	or	extended,	by	one	of	the	existing	simulation
standards	such	as	HLA	or	DIS,	that	are	especially	popular	in	the	Defence	sector.	Please
refer	to	Chapter	4	to	learn	more	about	this.

Gateways	and	Validation	Services

2.	Test-bed	description

18

https://avro.apache.org
https://kafka.apache.org


Even	while	using	well	defined	messages	based	on	Apache	AVRO,	it	is	certain	that	not	all
solutions	and	simulators	speak	each	other's	'language'.	Like	in	Europe,	as	not	everyone	is
speaking	Esperanto	or	English	and	there	is	a	need	for	translators,	in	the	Test-bed	we	need
gateways	to	translate	one	topic's	message	to	another.	Examples	are	not	only	translating	one
message	format	to	another,	but	for	example	to	translate:

A	message	from	a	simulator	sharing	the	location	of	all	vehicles,	to	a	COP	tool	message
that	only	contains	the	location	of	its	own	resources
An	EDXL	Resource	Management	request	from	a	COP	tool	to	a	simulator	message,
which	in	turn	sends	out	an	ambulance	to	the	required	location.

In	order	to	facilitate	solution	tools	to	obtain	their	needed	information	from	the	simulated
world,	the	CSS	needs	to	be	connected	with	the	CIS	by	means	of	translator	applications,
residing	in	the	CIS-CSS	Gateway.	These	translator	applications	form	the	bridge	between	the
simulated	truth	and	the	perceived/communicated	truth	by	mapping	the	relevant	changes
from	the	simulated	world	to	messages	globally	understood	in	the	CIS.

An	example	of	this	would	be	a	simulation	of	a	flooding.	Imagine	a	river	that	has	a	rising
water	level	due	to	increase	of	rain	water.	At	the	river	bank,	there	are	several	sensors	that
react	to	the	amount	of	water	coming	in	contact	with	the	sensor.	An	application	is	created	and
connected	to	current	operational	systems	to	send	CAP	messages	regarding	the	water	level
in	clear	categories	ranging	from	LOW	to	DANGEROUSLY	HIGH.	A	possible	solution	is
assessed	on	improving	decision-making	based	on	the	messages	outputted	by	the	created
sensor	application.

In	this	example,	the	water	in	the	river	is	handled	inside	the	CSS	by	means	of	a	simulator
focussed	at	calculating	water	levels	at	exact	locations.	The	sensor	application	would	be	a
translator	application	or	gateway,	mapping	the	current	water	levels	obtained	from	the	CSS
into	the	messages	with	understandable	categories	(and,	for	instance,	only	sending	them
whenever	a	change	in	category	is	observed)	similar	to	the	operational	application.	The	tool
connected	to	the	CIS	listens	to	the	formatted	messages	of	the	translator	application	as	if	it
was	connected	to	the	actual	operational	application.

There	are	also	tools	that	will	send	out	messages	that	serve	as	commands	or	requests	to
change	the	simulated	world	(e.g.	Command	&	Control	systems	used	to	trigger	procedures	to
be	executed	by	units,	which	in	case	of	a	Trial	are	simulated).	Again,	a	gateway	would	be
used	to	bridge	the	two	spaces	together.	For	example,	a	new	dispatch	centre	solution	(i.e.	a
type	of	COP	system)	that	allows	the	user	to	send	out	emergency	services	from	their
dispatch	towards	the	incident	location.	The	solution	would	send	out	a	standard	resource
management	message	via	the	CIS.	The	gateway	service	picks	up	the	message	and	maps	it
towards	the	corresponding	request	for	changing	the	simulation	space.	The	responsible
simulator	would	receive	this	request	via	the	CSS	and	handles	it,	changing	the	respective
simulation	entity	(i.e.	letting	a	simulated	unit	drive	in	the	simulated	world).

2.	Test-bed	description

19

https://avro.apache.org


Validation	Services	are	specific	gateways	that,	as	the	name	suggests,	validate	a	message
in	more	detail,	before	it	is	passed	on	to	other	systems.	For	example,	if	application	A	is
publishing	a	CAP	(Common	Alerting	Protocol)	message	for	application	B,	i.e.	A	-->	CAP
topic	-->	B,	the	Test-bed	will	make	sure	that	it	complies	with	the	appropriate	schema	before
passing	it	on.	However,	there	may	still	be	certain	aspects	in	the	message	that	are	not
completely	correct,	e.g.	the	alerting	area	that	is	represented	as	a	polygon	may	not	have	the
same	starting	and	ending	point	(i.e.	it	should	be	closed),	or	the	incident	location	that	is
represented	by	two	numbers	(x,	y),	may	actually	be	published	as	(y,	x).	So	during	testing,
the	validation	service	can	'intercept'	messages	between	A	and	B	and	validate	them	in	detail.
Only	valid	messages	are	passed	on,	i.e.	A	-->	CAP	validation	topic	-->	CAP	topic	-->	B.

2.2	Test-bed	administration	tool
The	Test-bed	is	a	collection	of	distributed	services	running	in	a	network	environment.	You
can	compare	it	to	a	theatre	play,	where	the	stage	needs	to	be	prepared,	the	musicians	must
be	ready,	as	well	as	the	light	and	sound	engineers.	The	Test-bed	admin	tool	(see	Figure	7)
helps	you	by	monitoring	both	the	CIS	and	the	CSS	to	support	understanding	what	is/was
going	on	during	a	Trial:	to	determine	whether	all	services	are	ready,	and	that	their	inputs	and
outputs	are	correct.	Also	in	case	a	service	encounters	any	errors,	this	is	made	visible	and
the	errors	can	be	inspected	-	are	they	serious	and	do	we	need	to	stop	our	Trial,	or	can	we
ignore	them	safely	and	run	on.

This	does	not	only	apply	to	the	Test-bed's	core	tools,	gateways	and	services,	but	also	for	the
connected	simulators	and	solutions.

2.	Test-bed	description

20



Figure	7.	Admin	tool.

Detailed	information:

Functional	specification
Website

2.3	Trialling,	Exercising	and	Scenario
Management
Whether	designing	a	Trial	to	evaluate	solutions,	or	an	exercise	to	train	people,	a	scenario
and,	optionally,	simulations,	are	needed	to	emerge	the	training	audience	and	to	give	them
the	feeling	that	they	are	dealing	with	an	actual	crisis.

For	an	exercise,	one	starts	by	defining	the	training	objectives,	What	does	the	training
audience	need	to	learn?.	Next,	an	appropriate	Mission	/	Main	scenario	is	formulated	in	which
these	training	objectives	can	be	tested	and	exercised.	The	mission	if	further	broken	down
into	storylines.	A	Storyline	describes	a	developing	situation	that	will	set	conditions	and
provide	the	Training	Audience	an	opportunity	to	achieve	a	specific	Training	Objective	and
optional	secondary	Training	Objectives.	It	often	targets	a	subset	of	the	training	audience,
e.g.	only	the	fire	fighters,	and	consists	of	timed	events,	or	so	called	injects.	Think	of	an	email
to	the	commander,	a	'start	flooding'	message	to	a	flooding	simulator,	or	instructions	to	a	role-
playing	actor.

2.	Test-bed	description

21

https://driver-eu.gitbooks.io/test-bed-specification/technical-requirements.html
https://github.com/DRIVER-EU/test-bed-admin


In	a	Trial,	although	the	primary	objective	is	not	to	train	people,	but	to	test	and	evaluate
solutions,	still	a	similar	procedure	can	be	followed.	In	that	case,	the	training	objectives	are
replaced	by	research	questions,	but	the	other	steps	remain	the	same.

Existing	software

The	process	described	above	is	the	typical	approach	taken	by	the	NATO	Joint	Exercise
Management	Module	(JEMM)	(see	Figure	8).	It	is	a	tool	to	support	live	exercises	as	well	as
table	top	exercises,	from	a	few	people	to	battalions.	It	puts	a	lot	of	emphasis	on
authorization	management	(who	can	do	what?)	during	the	creation	of	a	scenario,	and	has	a
limited	level	of	automation.	For	example,	JEMM	can	connect	to	Outlook	/	Exchange	Server
to	automatically	create	or	receive	email	messages.	Sending,	though,	is	still	a	manual
process.

JEMM	is	available	free	of	charge	to	military	NATO	members,	i.e.	to	use	it	in	a	Trial,	a	military
presence	is	required.

Figure	8.	JEMM	exercise	script	example.

Alternative	commercial	solutions	exist	too,	such	as	Exonaut	(see	Figure	9).	They	also	aim	at
a	military	audience,	and	follow	a	similar	approach.

2.	Test-bed	description

22

http://slideplayer.com/slide/7873364
https://www.4cstrategies.com/exonaut-products/training-and-exercise-manager


Figure	9.	Exonaut	timeline	example.

Scenario	manager

A	Scenario	Manager	is	an	integral	part	of	the	Test-bed	reference	implementation	too,	since	it
is	not	possible	to	use	JEMM	or	Exonaut	directly,	as:

JEMM	is	only	available	to	NATO	members,	and	can	only	be	used	in	a	an	exercise	when
military	personnel	requests	it.	This	will	not	always	be	the	case.
JEMM	and	Exonaut	are	aimed	at	the	military	community,	and	the	fit	with	the	Crisis
Management	domain	is	not	optimal.
JEMM	and	Exonaut	are	closed	source,	so	a	strong	integration	with	the	Test-bed	is	not
possible,	as	the	applications	cannot	be	modified.

The	Test-bed's	Scenario	Manager,	then,	acts	as	the	composer	and	conductor	of	a	classical
performance:

As	the	composer,	it	defines	what	each	role	has	to	play.	For	example,	what	do	the
simulators	or	role-players	need	to	do	in	order	to	provide	a	realistic	incident	and
background	to	the	Trial,	or	it	could	include	sending	direct	messages	to	solutions.
As	the	conductor,	it	controls	when	each	role	starts	and	stops.

Additionally,	the	Scenario	Manager	will	also	publish	messages	that	are	not	directly	related	to
the	scenario	itself.	For	example,	it	can	send	a	message	to	the	observers,	informing	them
that	they	need	to	pay	attention,	as	something	important	is	going	to	happen	soon.	Or	it	could

2.	Test-bed	description

23



ask	these	observers	specific	questions	during	the	Trial,	e.g.	'Did	you	notice	that	X
occurred?'.	These	messages	are	also	important	for	the	after-action	review,	as	they	can	be
used	as	bookmarks	to	quickly	go	to	parts	in	the	scenario	that	are	of	extra	importance	for	the
evaluation.

Detailed	information:

Functional	specification

2.4	Evaluation
Evaluation	is	needed	to	verify	that	the	Trial	objectives	have	been	achieved.	The	Test-bed
provides	two	services	for	this:	an	Online	Observer	Support	tool	and	an	After-Action	Review
tool.

Online	Observer	Support	tool

Based	on	the	specified	objectives	of	the	Trial,	an	observer	expects	to	observe	different	kinds
of	behaviour.	At	the	same	time,	there	is	little	time	during	a	Trial	to	record	behaviour,	as	the
Trial	runs	on,	and	that's	why	the	observer	tool	provides	Trial-specific	pre-made	forms
(templates)	to	quickly	create	a	new	observation.	For	example,	Did	you	observe	role	X	do	Y?
Yes/No.	These	trial-specific	forms	are	created	before	the	Trial	by	the	observation	team
manager	in	the	administration	panel.	based	on	the	data	collection	plan	(as	described	in	the
Trial	Guidance	Methodology).	Using	this	panel,	specific	forms	can	be	assigned	to	specific
observers.	The	observer	can	use	a	tablet,	phone	or	desktop	application	for	his	work.

Although	the	observer	tool	(see	Figure	10)	can	run	standalone,	outside	of	the	Test-bed
context,	there	are	several	benefits	when	it	is	connected,	since	this	allows:

To	share	observations	with	Trial	staff:	they	can	use	this	information	to	steer	the	Trial	in	a
particular	direction.
The	After-Action	Review	tool	can	use	the	observations	during	the	analysis	and
evaluation
The	Scenario	Manager	can	inform	the	observers	of	major	events	that	are	about	to
occur:	so	they	are	warned	ahead	of	time
Observation	forms	can	be	created	dynamically	and	transmitted	to	selected	observers

Although	the	observer	tool	enables	the	collection	of	personal	data,	research	ethics	is	outside
the	scope	of	this	technically-oriented	document,	and	is	being	described	in	more	detail	in
D922.21	-	Trial	guidance	methodology	and	guidance	tool	specifications	(version	1).

2.	Test-bed	description

24

https://driver-eu.gitbooks.io/test-bed-specification/technical-requirements.html


Figure	10.	Observer	Support	Tool:	Left,	an	overview	of	available	observation	templates.
Right,	one	of	the	observation	templates	is	selected.

Detailed	information:

Functional	specification
Website
Documentation

After-Action	Review	tool

The	After-Action	Review	(AAR)	tool	provides	the	possibility	to	collect	data	after	a	Trial	has
finished	and	analyse	it.	Its	main	purpose	is	to	facilitate	the	evaluation	of	the	trialled	solutions
against	the	predefined	objectives,	and	to	help	the	participants	determine	how	well	they
functioned.	It	collects	messages	(exchanged	during	Trial),	observation	reports	and	takes
screenshots	of	the	applications	during	their	use.

Detailed	information:

Functional	specification

2.5	Simulation

2.	Test-bed	description

25

https://driver-eu.gitbooks.io/test-bed-specification/technical-requirements.html
https://github.com/DRIVER-EU/ost
https://driver-eu.gitbooks.io/specification-of-the-online-observer-support-tool/
https://driver-eu.gitbooks.io/test-bed-specification/technical-requirements.html


Much	can	be	said	on	the	subject	of	simulation,	but	for	the	purpose	of	this	chapter,	it	suffices
to	provide	a	brief	overview	of	the	Test-bed's	relation	to	simulation.

In	the	Test-bed,	the	goal	of	simulation	is	to	provide	a	realistic,	immersive	background	for	the
Trial.	Typically,	this	requires:

A	simulation	of	the	incident	e.g.	a	flooding,	earthquake	or	explosion,	etc.	simulation
A	simulation	of	the	reactions	to	the	incident,	e.g.	people	running	away	or	drowning,
buildings	collapsing,	road	jams	or	traffic	accidents,	etc.
A	simulation	of	the	perceived	world,	i.e.	painting	a	picture	of	the	world	to	solutions	of
what	they	are	reasonably	expected	to	see,	not	what	is	actually	happening.	For	example,
when	an	area	is	flooded	in	the	simulation,	all	simulators	know	the	exact	location	of	the
water.	So	if	people	are	standing	knee-deep	in	the	water,	or	a	road	is	inaccessible	due	to
water,	that	can	be	shown	and	used.	However,	a	COP	tool	or	other	solution	does	not
have	such	a	perfect	view	of	what	is	happening	in	the	world.	It	does	not	know	where
everyone	is,	nor	the	exact	location	of	the	water	level.	As	long	as	it	has	no	sensors,
cameras,	drones,	or	people	informing	it,	it	may	well	believe	that	the	flooding	is	in	an
entirely	different	location	or	not	happening	at	all.	In	a	recent	CM	exercise,	it	took	the
participants	quite	some	time	to	figure	out	that	the	water	was	actually	threatening	their
own	location,	and	they	hadn't	taken	the	necessary	precautions.	A	well-designed	Trial,
therefore,	needs	to	think	about	how	they	are	going	to	present	the	simulated	world	within
the	Trial.

The	Test-bed,	therefore,	offers	support	to	simulators	for	creating	this	realistic	and	immersive
background,	by:

Providing	a	time-service:	i.e.	each	adapter	knows	the	scenario	time,	so	simulators	and
solutions	can	use	this	in	their	user	interface	and	calculations.	Think	of	a	clock	display,
but	also	when	sending	an	email	or	CAP	message,	making	sure	it	uses	the	correct
timestamps.
The	Scenario	Manager,	as	discussed	above.

It	does	not,	however,	provide	these	simulators	as	an	integral	part	of	the	Test-bed.	They	are,
and	shall	always	remain,	external.	Even	though	some	simulators	will	be	connected	during
the	project,	they	are	external,	as	as	such,	also	not	bound	by	the	open	source	requirements
that	the	Test-bed	has	to	adhere	too.	For	example:

XVR	connects	their	3D	crisis	management	environment,	Crisis	Media	and	Resource
Manager	to	the	Test-bed,	thereby	offering	their	(commercial)	services	to	other	parties
too.
DLR	connects	their	open	source	SUMO	(Simulation	of	Urban	Mobility)	traffic	simulator
to	the	Test-bed,	which	provides	realistic	traffic	during	an	incident
Thales	connects	their	commercial	Crowd	Simulator	to	the	Test-bed,	e.g.	providing	a

2.	Test-bed	description

26



realistic	simulation	of	people	in	need	during	a	crisis.

A	note	about	Simulators

All	simulators	have	their	own	data	model	of	how	they	represent	the	simulated	world.	The
CSS	allows	these	simulators	to	agree	on	a	communication	form	that	the	simulators
understand	to	create	and	maintain	a	jointly	simulated	world.

The	simulators	only	need	to	be	concerned	with	maintaining	the	current	state	of	a	given
location	(including	entities	and	processes	present	at	that	location),	and	do	not	have	to	deal
with	the	different	kinds	of	communication	types	for	tools	and	users	to	depict	that	current
state.

The	CSS	allows	simulators	to	only	focus	on	maintaining	the	current	state	of	the	simulated
world	(i.e.	the	simulated	truth	of	the	incident	and	the	world	around	it).	In	order	to
communicate	state	changes	with	other	simulators	inside	the	CSS,	self-created
communication	messages	are	allowed	inside	this	space.	This	is	different	than	the	messages
being	sent	over	the	CIS,	because	the	CIS	is	more	aligned	with	current	emergency
management	standards	(like	Common	Alerting	Protocol	(CAP)	messages,	or	Emergency
Data	Exchange	Language	(EDXL)	messages).

2.	Test-bed	description

27



3.	A	Test-bed	for	Trial	Owners
Trial	owners	will	interact	with	the	Test-bed	when	they	want	to	Trial	one	or	more	solutions.
Since	Trials	vary	in	complexity	and	scope,	not	all	TGM	steps	may	be	required	for	every	Trial.
On	the	one	side	of	the	spectrum,	the	Trial	may	be	more	like	a	simple	and	inexpensive
software	test,	in	which	a	Trial	Owner	can	verify	that	the	solution	has	useful	features,	is	user-
friendly,	looks	good,	and	doesn’t	crash.	Typically,	this	would	be	done	with	only	a	few	people.
For	a	CM	solution,	such	a	Trial	also	requires	(some	components	of)	the	Test-bed,	together
with	a	test-scenario.	The	test-scenario	allows	you	to	test	the	solution	in	a	relevant	context.

For	example,	if	one	would	test	a	COP	tool	as	is,	it	would	probably	not	have	any	map
layers,	basically	being	an	empty	map.	Using	a	test-scenario,	the	COP	tool	can	be
tested	in	the	context	of	a	simple	incident,	perhaps	a	flooding,	have	some	ambulances
driving	around,	and	map	layers	showing	population	information,	locations	of	critical
infrastructure,	etc.

On	the	other	side	of	the	spectrum,	a	Trial	could	involve	multiple	solutions,	many	participants
and	observers,	in	a	more	realistic,	operational-like	scenario,	with	proper	data	collection	and
evaluation	along	all	dimensions	in	place.	In	this	case,	the	full	TGM	should	be	applied	to
perform	a	proper	assessment	and	funded	conclusions	can	be	drawn.	As	the	latter	requires
a	serious	investment	in	time,	people	and	budget,	a	Trial	Owner	may	consider	to	combine	the
Trial	with	a	planned	exercise	to	reduce	the	costs	of	preparing,	executing	and	evaluating	a
Trial.

In	the	following	sections,	a	use	case	(storyline)	description	of	each	is	provided.	The	main
actor	in	each	story	is	Monica,	a	regional	crisis	manager	with	a	professional	background	in
fire-fighting.	One	of	the	challenges	she	is	facing	is	that	she	does	now	always	have	a	good
overview	of	where	her	people	and	trucks	are	during	a	large-scale	fire,	and	she	is	looking	for
a	solution.

3.1	Use	Case:	Evaluating	a	solution	standalone
Monica	has	heard	about	an	interesting	COP	solution,	csCOP	via	the	DRIVER+	Portfolio	of
Solutions.	She	considers	using	it	to	address	her	problems

1.	 Monica	visits	the	Test-bed's	composer	website	(see	Figure	11).
2.	 She	briefly	reads	its	homepage,	which	explains	her	what	to	do	next.
3.	 She	opens	the	solution's	tab	and	sees	that	csCOP	is	available	for	evaluation.
4.	 She	select	csCOP	in	the	menu	(see	Figure	12).

3.	Test-bed	for	Trial	owners

28

https://driver-eu.github.io/docker-composer


5.	 She	understands	that	it	is	difficult	to	test	a	solution	without	any	data	/	scenario,	so	she
visits	the	data	tab	and	selects	a	fire-fighting	data	set	situated	in	the	South	of	France:	It
involves	a	large-scale	forest	fire,	which	is	rapidly	spreading.	Ambulances	and	fire	trucks
are	deployed	and	driving	around.	She	can	also	look	at	census	data	of	the	area	and	a
weather	report.

Figure	11.	Test-bed	composer's	home	page.

Figure	12.	Test-bed	composer:	Selecting	a	solution.

From	here	on	forwards,	two	alternatives	are	presented.	The	first	one	represents	the	desired
situation.	The	second	alternative	is	already	in	place.

3.	Test-bed	for	Trial	owners

29



Alternative	1:	Cloud	scenario

1.	 As	she	currently	isn't	interested	in	other	solutions,	she	opens	the	menu	and	clicks	on
the	DEPLOY	button.	A	dialog	opens	and	informs	her	to	wait	while	her	selected	Test-bed
is	started	in	the	cloud.

2.	 After	a	minute	or	so,	the	Test-bed	is	running	and	she	gets	her	own	unique	link.	She
visits	this	website,	and	is	presented	with	a	simple	menu:	she	can	start	(pause	|	stop)	the
fire	fighting	scenario,	and	open	the	website	of	the	csCOP	tool.	In	its	layer	menu,	she
can	turn	on	the	layer	which	shows	the	ambulances	and	fire	trucks.	There	are	also
options	to	turn	on	the	fire	fighting	layer	to	show	the	location	of	vehicles	and	staff,	etc.

Alternative	2:	Local	scenario

1.	 As	she	currently	isn't	interested	in	other	solutions,	she	opens	the	menu	and	clicks	on
the	BUILD	button.	A	dialog	opens	and	she	can	download	the	Docker-compose	file	to	her
PC	(see	Figure	13).

2.	 Running	a	simple	command,	the	Test-bed	is	downloaded	and	started	on	her	own	PC,
and	she	can	interact	with	the	Test-bed	as	described	above.

Figure	13.	Test-bed	composer:	Downloading	the	docker-compose.yml	file.

3.2	Use	Case:	Assessing	solutions	using	a
Trial

3.	Test-bed	for	Trial	owners

30



In	order	to	run	a	Trial,	the	same	process	as	described	above	is	followed.	The	main
difference	is	that	more	services	and	solutions	will	be	added,	and	in	many	cases,	perhaps	for
security	reasons,	the	Test-bed	is	run	locally	on	the	internal	network.	Basically,	instead	of	only
using	the	Test-bed	core's	services,	a	more	complete	Test-bed	is	required,	also	containing
the	observer	tool,	AAR,	and	Scenario	Manager.

In	addition,	the	Test-bed	is	needed	already	well-before	the	final	Trial	date,	since:

The	scenario	must	be	created	iteratively.
Not	all	solutions	or	simulators	are	already	able	to	connect	to	the	Test-bed.	So	even
before	the	first	dry-runs,	solutions	and	simulators	should	be	able	to	test	their	connection
and	integration.

Typically,	setting	up	the	Test-bed	for	a	Trial	would	not	be	performed	by	the	Trial	owner
herself.	Most	likely,	she	will	be	supported	by	a	local	system	administrator	or	consultant	to
help	her	decide	what	she	needs,	and	to	prepare	the	technical	infrastructure.

When	the	Test-bed	is	running,	though,	the	Trial	owner	has	to	take	responsibility	again	for
defining	the	scenario	in	case	she	has	not	delegated	this	task.	The	scenario	is	key	in	that	it
translates	specific	objectives	to	a	storyline	so	the	solutions	or	people	can	be	put	to	the	test.

As	the	Scenario	Manager	is	not	available	in	the	current	version	of	the	Test-bed,	only	a	brief
outline	can	be	provided.	During	the	preparation,	the	Scenario	Manager	acts	as	the
composer:

The	objectives	of	the	Trial	are	defined.
An	overall	scenario	is	described	that	can	put	these	objectives	to	the	test.
Specific	storylines	are	created	to	stress	the	solutions.

During	a	Trial,	the	scenario	is	started	by	the	Trial	owner.	The	Scenario	Manager,	acting	as
the	conductor	now,	instructs	everyone	when	to	perform	their	planned	act.	Optionally,she	can
control	the	scenario	time,	for	example	freezing	the	time	during	a	break,	or	to	steer	the	Trial
in	another	direction.

3.	Test-bed	for	Trial	owners

31



4.	The	Test-bed	for	developers	and	sysops
A	sysops	(system	operators	or	system	administrators),	in	the	current	context,	is	responsible
for	installing	the	Test-bed	on	their	local	network,	and	making	sure	that	all	the	solution	and
simulation	providers	can	get	access	to	this	network	as	well.	This	task	is	discussed	in	the	use
case	'Installing	the	Test-bed'.

A	developer	would	be	tasked	with	connecting	an	existing	solution	or	simulator	to	the	Test-
bed.	Besides	the	direct	coupling,	allowing	their	tools	to	receive	and	publish	messages,	it
most	likely	also	involves	translating	existing	messages	to	their	own	format.	Finally,	in	case
you	are	connecting	a	simulator,	you	also	need	more	detailed	information	about	the	time
management	in	the	Test-bed.

4.1	Use	case:	Installing	the	Test-bed
The	previous	chapter	already	explained	how	to	setup	the	Test-bed.	More	detailed
information	about	how	to	run	the	Docker-compose	environment	can	be	found	here.
Alternatively,	in	the	near	future,	use	the	GUI.

System	administrators	are	also	responsible	for	setting	up	the	local	network,	such	that	all
solution	and	simulator	providers	have	access	to	the	local	intranet	as	well	as	extranet.

In	particular,	it	should	be	considered	that	some	providers	make	heavy	use	of	the	network,
e.g.	to	download	maps,	stream	video,	or	access	external	computer	clusters.	If	that	is	the
case,	consider	using	a	throttling	service	in	your	network,	so	one	provider	does	not	claim	all
the	network	traffic.

More	directly	related	to	the	Test-bed,	however,	is	the	connection	of	all	solutions	and
simulators:	are	they	connected	correctly	to	the	Test-bed,	do	they	run	without	errors,	are	they
subscribed	to	the	correct	topics,	and	do	they	publish	to	the	expected	topics,	are	some	of	the
questions	that	the	admin	tool	can	answer	for	you.	In	addition,	the	admin	tool	makes	sure	that
all	message	schemas	are	available.	And	when	everything	is	in	place,	the	actual	Trial	can
start.	Finally,	the	admin	tool	offers	a	convenient	interface	to	all	the	other	technical	Test-bed
services,	such	as	the	REST	services,	Topics	UI,	Schema	Registry,	Kafka	Connect,	etc.

From	then	on,	the	system	administrator	only	needs	to	check	whether	the	Test-bed	does	not
experience	any	issues,	like	disconnected	applications.

4.	Test-bed	for	developers	&	sysops

32

https://github.com/DRIVER-EU/test-bed/tree/master/docker
https://driver-eu.github.io/docker-composer


4.2	Use	case:	Integration	process	for	a	single
solution	or	simulator
Within	DRIVER+,	a	dedicated	integration	process	for	solutions	is	described	in	a	separate
document,	D934.21,	"Solution	testing	procedure".	This	section	describes	how	to	integrate
with	the	Test-bed	reference	implementation,	and	also	covers	simulators	and	other	tools.

This	use-case	is	executed	during	the	integration	of	a	single	solution	or	simulator	into	the
Test-bed.	It	does	not	apply	to	the	testing	of	multiple	applications,	and	should	already	have
been	successfully	performed	before	the	application	is	tested	in	a	larger	context	with	multiple
solutions	and	simulators.

1.	 Developer	starts	up	the	Test-bed	and	the	Admin	Tool,	or	uses	a	Test-bed	available
online.

2.	 Developer	selects	one	of	the	existing	adapters,	integrates	it	into	his	application,	and
connects	to	the	Test-bed.	The	Admin	Tool	shows	whether	the	connection	is	established
successfully.	Adapters	are	available	in	multiple	languages:	Java,	C#,
JavaScript/TypeScript	and	REST.	A	Python	version	will	be	available	in	the	next	release.

3.	 Developer	defines	the	input/output	AVRO	message	schemas	and	topics	based	on	the
running	test-bed.	Many	popular	schemas	for	CAP,	EMSI,	MLP,	GeoJSON	etc.	have
already	been	defined	in	our	AVRO-schemas	repository	and	should	be	re-used	if
applicable.
i.	 In	case	your	message	format	is	not	available,	you	need	to	create	a	new	one	and
register	it	with	the	Test-bed's	schema	registry.	You	can	do	that	manually,	or
alternatively,	the	adapter	will	do	this	for	you.	The	registration	procedure	is	a	bit
different	for	each	adapter.

ii.	 In	case	your	information	is	available,	but	in	a	format	that	the	application	does	not
support,	you	can	create	a	gateway	service	to	translate	messages	in	one	topic,	e.g.
MLP,	to	another	message	format,	e.g.	GeoJSON,	and	consume	the	latter.

4.	 Developer	starts	up	the	Kafka	replay-service	to	send	them	one-by-one	or	replay	a
logged	sequence	of	messages.	To	log	the	messages	in	a	topic,	you	can	use	the	Kafka-
topics-logger	or	the	topics	UI	to	save	them.	This	is,	for	example,	useful	when	you	need
to	integrate	with	an	application	that	does	not	run	locally,	e.g.	when	your	COP	tool	needs
to	consume	messages	from	a	simulator	that	you	do	not	have	running	locally.

In	the	next	version	of	the	Test-bed	reference	implementation,	there	will	also	be	a
message	injector	application,	comparable	to	Swagger	or	Postman,	in	which	you	will	be
able	to	create	your	own	messages	using	a	friendly	user	interface.	It	will	use	the	AVRO
schema	to	automatically	create	a	form	for	defining	your	messages.

4.	Test-bed	for	developers	&	sysops

33

https://github.com/DRIVER-EU/java-test-bed-adapter
https://github.com/DRIVER-EU/csharp-test-bed-adapter
https://github.com/DRIVER-EU/node-test-bed-adapter
https://github.com/DRIVER-EU/test-bed-rest-service
http://avro.apache.org/docs/current
https://github.com/DRIVER-EU/avro-schemas
https://github.com/DRIVER-EU/kafka-replay-service
https://github.com/DRIVER-EU/kafka-topics-logger
http://swagger.io
https://www.getpostman.com


5.	 In	case	the	integrated	application	also	sends	messages,	Developer	can	use	the	Kafka
topics	UI	to	verify	that	they	were	created	and	published	to	the	Test-bed	successfully.

6.	 When	your	message	uses	time,	you	need	to	query	the	adapter	to	get	the	local	Trial
time.	A	first	version	of	the	Test-bed's	time-service	to	manage	the	Trial	time	has	just	been
released,	and	some	adapters	already	offer	an	interface	to	it.	So	there	is	no	need	to
query	the	Test-bed	yourself	to	get	these	messages.	In	case	no	time	messages	are
available,	i.e.	you	are	not	running	a	Trial,	it	returns	the	local	system	time.	Please	also
check	the	time	management's	state	machine	in	Section	4.5	below.

Currently,	not	many	solutions	have	already	been	integrated	with	the	Test-bed.	Now	that	the
Test-bed	itself	is	stable,	and	adapters	are	available,	the	integration	of	many	existing
solutions	will	take	place.	In	the	mean	time,	not	all	solutions	will	be	able	to	connect	to	the
Test-bed	as	described	above,	and	during	an	actual	Trial,	the	Trial	coordinator	has	to	decide
if,	and	to	what	degree,	a	solution	needs	to	be	integrated.

Message	Topics	UI

The	Test-bed	includes	Landoop's	Kafka	topics	UI	service	(see	Figure	14)	to	inspect	all	the
message	topics	that	exist	(default	location	http://localhost:3600).	It	can	be	used	to	inspect
whether	you	have	been	successful	in	sending	your	messages	to	the	Test-bed.

Figure	14.	Screenshot	of	Landoop's	Kafka	topics	UI,	which	is	part	of	our	test-bed.

Schema	Registry

4.	Test-bed	for	developers	&	sysops

34

https://github.com/DRIVER-EU/test-bed-time-service
https://github.com/Landoop/kafka-topics-ui
http://localhost:3600


The	Test-bed	also	includes	Landoop's	AVRO	schema	registry	service	(see	Figure	15)	to
inspect	all	the	available	schema's	(default	location	http://localhost:3601).	As	each	message
topic	only	has	one	schema,	every	message	send	to	a	topic	needs	to	comply	with	that
schema	too.	Also,	in	case	a	developer	is	creating	new	messages,	these	schemas	must	first
be	added	to	the	schema	registry,	either	manually	or	via	an	adapter.

Figure	15.	Screenshot	of	Landoop's	AVRO	schema	registry,	which	is	part	of	our	test-bed.

REST	service

The	Test-bed	contains	a	REST	service:	in	case	a	(legacy)	solution	is	not	adaptable,	or	the
solution	is	developed	in	a	programming	language	that	is	not	supported,	it	may	be	necessary
to	interact	with	the	Test-bed	via	the	REST	service.

Replay	service

Connecting	to	the	Test-bed	is	needed	to	share	information	that	you	produce,	or	consume
information	from	others.	While	working	on	integrating	your	own	simulator	or	solution,
however,	it	is	very	likely	that	there	are	no	other	simulators	or	solutions	running.	When
sending	messages,	you	can	use	the	Kafka	topics	UI	to	verify	that	your	messages	have	been
delivered.	And	it	is	the	purpose	of	the	replay	service	(see	Figure	16)	to	present	you	with
messages	to	consume.

4.	Test-bed	for	developers	&	sysops

35

https://github.com/Landoop/schema-registry-ui
http://localhost:3601
https://github.com/DRIVER-EU/kafka-replay-service


For	example,	assume	that	you	as	a	developer	are	tasked	to	integrate	a	COP	solution.	It
needs	to	consume	the	locations	of	the	rescue	vehicles,	which	are	normally	generated	by	a
simulator.	However,	it	is	a	commercial	simulator	that	you	do	not	have.	In	that	case,	you
request	the	simulator	to	run	a	scenario	and	publish	it	to	the	Test-bed.	Next,	the	simulator	will
log	all	the	messages	to	file	using	the	Kafka-topics-logger.	This	log	file	is	subsequently	sent
to	the	COP	solution	developer,	who	can	replay	it	using	the	replay	service,	as	if	it	was	the
simulator	was	present.

Figure	16.	Screenshot	displaying	the	Kafka-replay	service's	Swagger	interface.

4.3	Use	case:	Pre-trial	integration	testing
The	procedure	for	testing	multiple	solutions	and	simulators	before	an	actual	Trial	with
participants	is	performed,	is	similar	to	the	procedure	for	testing	a	single	application.	It	is
assumed	that	the	single	solutions	and	simulators	have	already	been	successfully	integrated
with	the	Test-bed,	and	all	required	message	schemas	are	defined.

1.	 Sysop	starts	up	the	Test-bed	and	the	Admin	Tool,	or	uses	a	Test-bed	available	online.	If
not	done	already,	all	required	schema's	are	registered	with	the	schema	registry.

2.	 Sysop	inspects	the	Admin	Tool	and	verifies	that	all	required	solutions	and	simulators	are
available	and	running	online	without	errors.

3.	 Sysop	starts	up	the	Scenario	Manager	(not	yet	available),	loads	the	Trial	scenario,	and
initializes	it.	The	Test-bed's	time	service	updates	the	fictive	Trial	time	and	state,	and
every	application	that	uses	time	should	reflect	that.

4.	Test-bed	for	developers	&	sysops

36

https://github.com/DRIVER-EU/kafka-topics-logger


4.	 Sysop	runs	the	Trial	scenario,	either	from	the	beginning	or	at	another	point	in	time,	e.g.
where	issues	were	discovered.	The	time-service	will	update	the	fictive	time	accordingly.

5.	 Sysop	resets	the	Trial	scenario,	and	replays	it,	as	many	times	as	required	to	make	sure
that	everything	works	as	expected.

4.4	Gateways	for	translating	messages
As	a	developer,	you	may	be	confronted	with	message	formats	you	need	to	consume,	but	do
not	support	natively	in	your	application.	In	that	case,	you	can	either:

Adapt	your	application	to	support	these	message	formats	natively.
Create	a	gateway	service	which	translates	messages	from	one	message	format	to	a
format	that	your	application	does	understand.

To	create	such	a	gateway	service	is	simple:	you	consume	messages	from	one	message
topic,	convert	them,	and	publish	them	on	another	topic.	The	validation	services	follow	the
same	approach,	and	several	dedicated	services	are	already	available	within	the	DRIVER+
space	on	GitHub.

4.5	Data	services	and	data	sets
Within	a	Trial,	we	need	to	create	a	virtual	environment	where	we	can	safely	experiment.	This
virtual	environment	is	created	using	data,	such	as	maps,	census	data,	height	data,	power
lines,	cell	towers,	hospitals	and	care	providers,	etc.	As	it	is	a	lot	of	work	to	create	such	a	rich
data	environment,	the	effort	should	be	shared	among	the	Trial	owners,	solution	and
simulator	providers.	Not	only	to	reduce	the	workload	for	a	specific	organisation,	but	also	to
make	sure	that	all	parties	use	the	same	data.	Otherwise,	a	traffic	simulator	may	use	a
different	roadmap	than	the	simulator	that	provides	a	3D	environment,	and	some	roads	may
be	blocked	by	buildings.

In	many	cases,	real-world	data	is	used,	optionally	enriched	with	scenario-specific
information.	Sometimes,	a	virtual	environment	is	created,	based	on	real-world	data	but	with
altered	names.

So	in	order	to	share	all	this	gathered	data,	the	Test-bed	offers	two	types	of	services:

Docker	volume	images	to	store	all	this	information	together,	so	the	data	can	be	easily
shared.	A	Test-bed	user	can	simply	pull	the	volume	image	from	the	Docker	hub	to	have
all	data	instantly	available
Data	services,	to	share	this	data	with	all	users,	e.g.	there	is	an	MBtiles	service	to	offer
map	images	to	COP	and	COP-like	tools,	or	a	WMS	service	that	translate	Test-bed

4.	Test-bed	for	developers	&	sysops

37

https://github.com/DRIVER-EU
https://github.com/DRIVER-EU/test-bed-mbtiles-service
https://github.com/DRIVER-EU/test-bed-wms-service


messages	to	WMS	map	layers	available	to	make	the	information	available	to	legacy
systems.

Security	is	yet	another	reason	to	have	these	data	services	and	data	sets	as	part	of	the	Test-
bed.	Not	all	Trials	have	open	access	to	the	Internet,	but	they	still	need	access	to	this	kind	of
data.

4.6	Time	management
A	Trial	typically	is	not	performed	in	real-time:	either	because	the	incident	occurs	at	night,	and
people	prefer	to	Trial	during	working	hours,	because	of	the	limited	availability	of	participants,
or	because	it	would	simply	take	too	long.	An	example	of	the	latter	is	a	flooding	incident,
which	can	start	days	before	any	flooding	actually	occurs,	so	you	need	to	compress	the
scenario	to	normal	working	hours.

Within	the	Test-bed,	therefore,	the	scenario	time	(a.k.a.	Trial	time	or	fictive	time)	is	controlled
via	the	time	service	(see	Figure	17)	using	two	types	of	messages:	one	for	controlling	the
time,	and	one	for	informing	adapters	about	the	current	scenario	time.

As	a	developer,	you	do	not	need	to	interact	with	these	messages	directly,	since:

Every	adapter	has	a	time	interface	to	get	the	current	scenario	time.	Even	as	a	solution
developer,	you	should	also	use	this	time	to	timestamp	the	messages	that	you	send.	For
example,	if	inside	your	message	you	refer	to	a	particular	time,	always	base	it	on	the
scenario	time.
Every	adapter	has	a	state	describing	the	current	scenario	phase,	which	you	can
optionally	use	during	the	integration:

Idle:	no	scenario	has	started.	The	time	interface	returns	the	system	time.
Initialized:	the	scenario	is	ready	to	be	started.	All	adapters	will	receive	the	scenario
start	time,	and	can	use	this	to	initialize	their	service.	In	the	near	future,	adapters
have	the	ability	to	inform	the	Test-bed	when	they	are	initialized	and	ready	to	start.
Running	(started	or	paused):	the	scenario	time	is	moving	forward,	either	in	real
speed	or	slower/faster	than	normally.	In	case	the	scenario	is	paused,	the	current
scenario	time	is	still	actively	being	distributed,	but	does	not	progress	(speed	is	0).
Stopped:	The	scenario	stops,	and	the	simulation	time	is	no	longer	being	updated.

4.	Test-bed	for	developers	&	sysops

38

https://github.com/DRIVER-EU/test-bed-time-service
https://github.com/DRIVER-EU/avro-schemas/tree/master/core/time


Figure	17.	State	diagram	of	the	time	service.

Even	though	you	do	not	interface	with	the	time	messages,	you	still	need	to	use	the	time
interface	when	you	need	to	send	a	message	with	a	timestamp	inside.	This	timestamp	should
use	the	current	scenario	time.	Similarly,	in	case	you	display	the	'actual'	time	in	your	user
interface,	please	also	use	the	current	scenario	time.

System	time	versus	scenario	time

In	Trials	executed	in	the	past,	the	operating	system	(OS)	time	was	also	adjusted	to	match
the	scenario	time.	The	advantage	was	that	if	you	would	check	the	time	in	your	status	bar,	it
would	display	the	current	scenario	time	instead	of	the	real	time.	Although	this	is
straightforward	to	do,	your	OS	does	not	like	it,	as	it	will	generate	files	in	the	past	or	future,
and	may	mess	up	your	system.	Especially	when	the	scenario	is	paused.	That's	why	the
current	Test-bed	does	not	require	you	to	synchronize	your	system	time	to	the	scenario	time.

4.	Test-bed	for	developers	&	sysops

39



A	word	about	HLA	and	DIS

Within	the	Modelling	&	Simulation	community,	especially	for	military	use,	there	are	two
simulation	standards,	HLA	(High	Level	Architecture)	and	DIS	(Distributed	Interactive
Simulation),	which	are	the	norm.	The	reasons	why	we	did	not	use	these	standards,	not	even
for	the	CSS,	are:

They	are	used	for	connecting	simulators	to	each	other,	not	for	connecting	solutions	to
simulators	nor	solutions	to	other	solutions.
Their	message	format	is	fixed:	if	you	want	to	send	other	information,	you	have	to	're-
purpose'	existing	fields,	which	is	not	considered	a	best	practice.	Also,	they	have	no
support	for	any	CM	standard.
Both	have	a	steep	learning	curve.
HLA	and	DIS	form	a	very	small	community,	so	it	is	difficult	to	hire	people	with	this
knowledge,	and	you	typically	have	to	train	general	software	engineers	by	yourself.
Second,	it	is	difficult	to	find	solutions	for	a	particular	problem	on	the	Internet.
HLA	and	DIS	expect	everyone	to	use	Java	or	C++,	and	there	is	even	less	support	for
the	'newer'	programming	languages,	like	C#,	JavaScript,	Python,	etc.
HLA	requires	a	run-time	infrastructure,	which	is	a	kind	of	test-bed:	there	are	two
commercial	providers	that	are	rather	expensive.	Although	there	is	one	open	source
version,	it	is	feature	incomplete	and	not	well	maintained.	Although	these	versions
should	be	interoperable,	they	are	not,	and	they	cannot	be	mixed.

That's	why	this	Test-bed	is	using	open	source	software,	so	it	is	easy	to	find:

Open	source	tools	to	support	it,	or	to	connect	to	it,	in	many	programming	languages
Answers	to	questions
People	that	can	use	it
A	new	schema	representing	your	message
And	there	is	no	financial	hurdle	preventing	adoption

Even	though	the	Test-bed	does	not	use	HLA	or	DIS	internally,	there	are	many	simulators
that	provide	a	HLA	or	DIS	export,	and	that	can	be	useful	for	a	Trial.	In	those	cases,	a	HLA	or
DIS	simulation	environment	can	be	created,	as	is	done	normally,	including	a	gateway
service	to	bridge	the	gap	with	our	test-bed:	typically,	such	a	gateway	has	an	HLA	connector
to	retrieve	information	from	the	HLA/DIS	side,	and	a	subset	of	the	information	is	published	in
the	CSS.	And	vice	versa.	Even	though	this	kind	of	integration	if	suboptimal,	in	practice,	this
is	not	really	noticeable.

4.	Test-bed	for	developers	&	sysops

40

https://github.com/openlvc/portico


5.	Test-bed	design
The	Test-bed	is	designed	to	fulfil	the	functional	requirements,	as	described	in	D923.11,
"Functional	specification	of	the	Test-bed".	Clearly,	different	designs	can	be	created	that	all
fulfil	these	requirements,	so	this	chapter	provides	a	brief	explanation	of	the	major	design
decisions	that	underlie	the	current	Test-bed's	reference	implementation.	Its	intended
audience	is	core	developers,	who	want	to	improve	its	functionality,	or	other	backend
developers,	who	want	to	create	an	alternative	Test-bed	that	also	satisfies	these
requirements.

5.1	Lessons	learned	from	the	Functional
Specification
Part	of	the	functional	specification	describes	the	lessons	learned	from	D923.11.	To
summarize	the	most	important	technical	lessons	that	have	influenced	the	current	design
significantly,	are:

1.	 The	Test-bed	should	be	open	source.
2.	 The	Test-bed	should	have	a	message-oriented	architecture.
3.	 The	Test-bed	should	use	well-defined,	easily	accessible,	syntactically	correct

messages,	and	close	to	common	standards.
4.	 The	Test-bed	should	be	easily	reproducible,	and	offer	administrative	as	well	as

supporting	tools	and	services.

5.2	Distributed	message	bus	using	Apache
Kafka
Based	on	the	functional	requirements	and	lessons	1	and	2,	and	an	analysis	of	many	existing
message-oriented	systems,	the	Test-bed's	backbone	is	built	upon	the	distributed	streaming
service,	Apache	Kafka.	The	main	reasons	to	use	Kafka	are:

Kafka	allows	for	high	performance	sending	and	receiving	of	a	very	large	number	of
messages
Kafka	allows	for	fast	data	replication	and	supports	multiple	receivers	on	the	same
message	topic
Kafka	is	a	highly	durable	messaging	system,	persisting	messages	on	the	server	or
complete	distributable	file	systems

5.	Test-bed	design

41

https://driver-eu.gitbooks.io/test-bed-specification/content/lessons-learned.html
https://kafka.apache.org


Kafka	is	a	distributed	system,	making	it	scalable	in	the	amount	of	message	topics,
senders	and	receivers.
Kafka	already	has	a	large	developer	community,	making	it	possible	to	easily	use
community-released	tools	to	the	current	framework	and	assuring	sustainability	of	Kafka.
Kafka	already	has	several	security	and	message	validation	modules	present,	that	will
make	it	easier	for	simulators	to	safely	connect	to	the	CSS.

Besides	Apache	Kafka,	there	are	numerous	popular	open	source	messaging	systems	that
were	considered:	ActiveMQ,	RabbitMQ,	and	ZeroMQ.	The	main	reason	for	using	Kafka,
however,	is	its	speed,	low	latency,	and	the	fact	that	it	is	built	from	the	ground	up	to	be
distributed.	Especially	for	the	simulators	that	are	connected	to	the	Test-bed,	speed	and	low-
latency	are	very	important.	And	Kafka	can	easily	process	up	to	100,000	messages	per
second,	10	times	as	much	as	the	others.	Its	distributed	nature	allows	to	not	only	separate
simulators	and	solutions,	if	required,	but	also	supports	having	a	reliable	cross-site
communication	framework.	Additionally,	with	its	schema	registry,	it	has	excellent	support	for
message	validation	out-of-the-box,	which	is	detailed	in	the	next	section.	The	same	applies	to
message	persistency.	Each	message	is	immediately	persisted	to	disk	for	a	set	time,	which	is
easy	for	After-Action-Reviews,	but	also	for	clients	that	are	not	continuously	online.	In	most
messaging	systems,	when	a	consumer	is	briefly	offline,	the	message	is	lost	forever	unless
special	care	is	taken	to	persist	them.

5.3	Well-defined	messages	using	Apache
AVRO
Being	able	to	communicate	using	well-defined	messages	is	of	primordial	importance	for	any
messaging	system,	and	the	Test-bed	uses	Apache	AVRO.

AVRO	provides:

Rich	data	structures.
A	compact,	fast,	binary	data	format.
A	container	file,	to	store	persistent	data.	For	example,	you	could	save	all	logged	AVRO
messages	into	a	file,	which	also	includes	the	schema	file.	This	means	that	you	will
always	be	able	to	read	the	file	at	a	later	date,	as	is	contains	all	the	information	to
decode	the	messages.
Remote	procedure	call	(RPC).
Simple	integration	with	dynamic	languages.	Code	generation	is	not	required	to	read	or
write	data	files	nor	to	use	or	implement	RPC	protocols.	Code	generation	as	an	optional
optimization,	only	worth	implementing	for	statically	typed	languages.

In	the	Test-bed,	each	message	consists	of	a	key	and	a	value,	with:

5.	Test-bed	design

42

https://www.rabbitmq.com
http://zeromq.org
https://avro.apache.org


The	same	AVRO-encoded	key,	based	on	the	core	attributes	from	the	EDXL	DE
envelope	(distributionID,	senderID,	dateTimeSent,	dateTimeExpires,	distributionStatus,
and	distributionKind).	It	can	be	used	to	support	easy	filtering	and	routing,	and	have	a
consistent	message	timestamp.
A	potentially	different	AVRO-encoded	value,	containing	the	actual	message.

Each	adapter	verifies	the	key	and	value	of	each	message	before	publishing	(producing	in
Kafka	terms)	it.	As	Kafka	limits	you	to	have	only	one	key/value	schema	pair	per	topic,	there
is	no	confusion	when	consuming	a	message	about	the	schema's	to	use	to	decode	a
message's	key	and	value.

Other	evaluated	candidates	for	defining	message	formats	were	XML	schema,	Google's
Protobuf,	and	HLA.

XML	schema	is	arguably	the	most	popular	format,	especially	when	dealing	with
standards.	However,	it	is	very	verbose,	being	text-based,	which	makes	all	messages
very	large.	And	it	does	not	allow	for	schema	migration,	i.e.	different	versions	of	a
message.	This	often	leads	to	a	'creative	re-use'	of	existing	fields,	which	is	common
practice	but	not	recommended.
Protobuf	is	also	a	binary	message	format,	like	AVRO,	but	also	lacks	schema	migration.
HLA,	yet	another	binary	message	format,	is	standard	in	the	(Defence)	simulation	world,
but	of	no	use	when	defining	messages	in	the	CIS	space.

5.4	Dealing	with	large	messages
Kafka	and	AVRO	are	ideally	suited	for	smaller-sized	messages,	i.e.	typically	not	exceeding
1Mb	compressed.	However,	a	typical	flooding	file	may	well	exceed	1Gb	of	data.	The	solution
that	currently	is	being	designed	is	the	following:	in	the	Test-bed,	there	is	one	file	hosting	data
services	(e.g.	FTP)	for	uploading	large	files.	Each	adapter,	when	confronted	with	a	large
message	exceeding	a	threshold,	uploads	the	data	in	the	background	to	the	file	hosting	data
service,	and	in	return,	receives	an	obfuscated	link.	This	link	is	subsequently	shared	via	the
Test-bed,	and	any	consumer	interested	in	the	actual	data	can	retrieve	it	from	there.

A	note	about	security:	In	principal,	these	files	are	openly	available	within	the	Trial
environment	(which	may	be	on	a	closed	network,	of	course).	However,	since	the	link	is	not
easy	recognizable,	you	will	not	be	able	to	guess	it.	Basically,	security	through	obscurity.	This
approach	is	similar	to	the	one	popular	open	file	sharing	services	provide	like	wetransfer.com,
and	should	be	sufficiently	safe	for	current	usage.

5.	Test-bed	design

43

https://github.com/DRIVER-EU/avro-schemas/blob/master/edxl-de/edxl-de-key.avsc
https://en.wikipedia.org/wiki/XML_schema
https://github.com/google/protobuf
http://wetransfer.com


5.5	CIS	and	CSS	adapters	in	several
programming	languages
On	top	of	the	communication	framework,	a	set	of	guidelines	need	to	be	present	that	allows
for	external	components	and	Test-bed	components	to	communicate	effectively.	In	this	case,
this	set	of	guidelines	is	packed	into	a	simple	library	called	the	adapter.

The	adapter	is	the	only	form	of	connection	between	an	application	(solution,	simulator,
gateway,	or	otherwise)	and	the	Kafka	communication	framework.	There	should	be	no	other
way	to	connect	to	it.

The	adapter	sets	up	and	maintains	the	connection	between	application	and	the
communication	framework	via	several	system	message	topics.	The	adapter	deals	with	error
handling	and	additional	message	validation,	allowing	the	application	to	send	and	receive
messages	easily.

Since	the	Test-bed	requires	multiple	solutions	and	simulators	with	different	implementation
frameworks	to	be	connected	to	the	CIS/CSS,	multiple	adapters	are	created.	Currently,	an
adapter	for	Java,	JavaScript/TypeScript	and	C#	is	created	and	can	be	found	in	the	DRIVER+
GitHub	(https://github.com/DRIVER-EU).	A	REST	endpoint	is	also	present	for	web	services
to	communicate	with	the	CSS	in	a	similar	fashion.	All	adapters	should	have	similarly
behaving	functionality	with	a	clear	and	understandable	API.

Adapters	extend	regular	Kafka	connectors	with	the	following	information,	each	of	which	is
displayed	in	the	Test-bed's	admin	tool:

Heartbeat	signals:	Before	you	can	start	a	Trial,	every	solution,	simulator	and	tool	needs
to	be	up-and-running.	Therefore	every	adapter	transmits	a	heartbeat	signal	every	5
seconds	to	inform	others	it	is	online.
Logging:	Besides	being	online,	it	is	also	important	to	know	that	each	connected	service
is	running	as	expected,	so	each	adapter	offers	the	option	to	log	warnings/errors	to	the
Test-bed	as	well.
Configuration	options:	The	adapter	can	inform	others	to	what	topics	it	subscribes	and
publishes.	In	addition,	this	can	be	configured	too	externally.	For	example,	the	admin	tool
can	configure	the	(potentially	secret)	topics	an	adapter	must	listen	too.
Time:	A	Trial	scenario	typically	will	not	run	at	real-time,	so	the	adapter	needs	to	share
the	fictive	simulation	time.	In	addition,	it	shares	the	simulation	speed,	as	we	may	be
running	slower	or	faster	than	real-time,	as	well	as	the	simulation	state.

5.	Test-bed	design

44

https://github.com/DRIVER-EU/java-test-bed-adapter
https://github.com/DRIVER-EU/node-test-bed-adapter
https://github.com/DRIVER-EU/csharp-test-bed-adapter
https://github.com/DRIVER-EU
https://github.com/DRIVER-EU/test-bed-rest-service


Abbreviations
Abbreviation Definition

AAR After	Action	Review

AVRO Open	data	serialization	system	supported	by	the	Apache	Organisation.
avro.apache.org

C++ [C	plus	plus]	Programming	Language

C# [C-sharp]	Programming	Language

CAP Common	Alerting	Protocol,	standard	data	format	for	exchanging	public
warnings

CIS Common	Information	Space	for	exchanging	crisis	management
messages

CM Crisis	Management,	see	also	Annex	1

CSS Common	Simulation	Space	for	exchanging	simulation	data

COP Common	Operational	Picture	tools	for	creating	a	shared	situational
awareness

CoPCM Community	of	Practice	in	Crisis	Management

DIS Distributed	Interactive	Simulation,	a	simulation	standard
en.wikipedia.org/wiki/Distributed_Interactive_Simulation

Docker Container	environment	to	enable	independence	between	applications
and	infrastructure

EDXL
Emergency	Data	Exchange	Language,	set	of	message	standards
defined	by	OASIS	to	share	emergency	information,	docs.oasis-
open.org/emergency

EMSI Emergency	Management	Shared	Information,	message	format	for	the
exchange	of	emergency	information

GitBook Open	Source	service	for	creating	online	books

GitHub Repository	for	managing	DRIVER+’s	software	code

GT Guidance	Tool

GUI Graphical	User	Interface

HLA High	Level	Architecture,	a	simulation	standard
en.wikipedia.org/wiki/High-level_architecture

Java Programming	Language

JavaScript Programming	Language

Acronyms

45

https://avro.apache.org
https://en.wikipedia.org/wiki/Distributed_Interactive_Simulation
http://docs.oasis-open.org/emergency
https://en.wikipedia.org/wiki/High-level_architecture


Kafka
An	open	source	distributed	streaming	platform	supported	by	the
Apache	Organisation	that	is	used	as	the	basis	to	exchange	information
between	simulators	and	solutions

KPI Key	Performance	Indicator

MBtiles Single	file	database	format	to	store	images	of	a	map

MGT Management

PoS
Portfolio	of	Solutions,	a	DRIVER+	content	management	system	to
maintain	a	list	of	CM	solutions,	their	application,	strength	and
weaknesses,	and	user	reviews.

Python Programming	Language

REST Representational	State	Transfer	(common	interface	allowing	you	to
read	and	write	data	from	a	service)

RTI Run-time	infrastructure,	a	kind	of	HLA-based	Test-bed

SA
Situational	awareness,	basically	do	you	know	on	the	map	where	your
people	and	other	resources	are,	as	well	as	all	relevant	crisis
management	related	incidents	and	activities.

SUMO Simulation	of	Urban	Mobility,	a	traffic	and	pedestrian	simulator

TGM Trial	Guidance	Methodology,	as	defined	in	deliverable	D922.21,	"Trial
guidance	methodology	and	guidance	tool	specifications	(version	1)".

TypeScript Programming	Language

WFS Web	Feature	Service	(serving	a	map	layer	as	vectors)

WMS Web	Mapping	Service	(serving	a	map	layer	as	picture)

XACML eXtended	Access	Control	Markup	Language,	a	standard	for	describing
security	permissions	to	resources

XML eXtended	Markup	Language,	a	textual	representation	of	a	message
that	is	easily	readable	by	computers

Acronyms

46



Annex	1:	DRIVER+	Terminology
Terminology Definition	for	DRIVER+ Source

Crisis
management

Holistic	management	process	that	identifies
potential	impacts	that	threaten	an	organization
and	provides	a	framework	for	building	resilience,
with	the	capability	for	an	effective	response	that
safeguards	the	interests	of	the	organization's	key
interested	parties,	reputation,	brand	and	value
creating	activities,	as	well	as	effectively	restoring
operational	capabilities.	Note	to	entry:	Crisis
management	also	involves	the	management	of
preparedness,	mitigation,	response,	and
continuity	or	recovery	in	the	event	of	an	incident,
as	well	as	management	of	the	overall	programme
through	training,	rehearsals	and	reviews	to
ensure	the	preparedness,	response	and
continuity	plans	stay	current	and	up-to-date.

ISO22300
(DRAFT	2017)
8

Evaluation
Process	of	estimating	the	effectiveness	(3.1.3.03),
efficiency	(3.1.3.04),	utility	and	relevance	of	a
service	(3.1.1.59)	or	facility	"ISO	5127:2017(en)

Exercise

Process	(3.180)	to	train	for,	assess,	practise	and
improve	performance	(3.167)	in	an	organization
(3.158)	Note	1	to	entry:	Exercises	can	be	used	for
validating	policies,	plans,	procedures	(3.179),
training	(3.265),	equipment,	and	inter-
organizational	agreements;	clarifying	and	training
personnel	(3.169)	in	roles	and	responsibilities;
improving	inter ​-organizational	coordination	(3.52)
and	communications;	identifying	gaps	in
resources	(3.193);	improving	individual
performance	and	identifying	opportunities	for
improvement;	and	a	controlled	opportunity	to
practise	improvisation.	Note	2	to	entry:	See	also
test	(3.257).

ISO22300
(DRAFT	2017)
11

Experiment
Purposive	investigation	of	a	system	through
selective	adjustment	of	controllable	conditions
and	allocation	of	resources

ISO/TR
13195:2015(en)
Selected
illustrations	of
response
surface	method
—	Central
composite
design,	2.1

Trial	Guidance
Methodology

A	structured	approach	from	designing	a	Trial	to
evaluating	the	outcomes	and	identifying	lessons DoW

Annex	1

47



(TGM) learned

Guidance	Tool

A	software	tool	that	guides	Trial	design,	execution
and	evaluation	in	a	step-by-step	way	including	as
much	of	the	necessary	information	as	possible	in
form	of	data	or	references	to	the	portfolio	of
solutions

DoW

Interoperability The	ability	of	diverse	systems	and	organisations
to	work	together,	i.e.	to	interoperate. ISO	22397

Legacy
systems

(Crisis	management)	system	currently	in
operational	use.

Initial	DRIVER
definition

Observer

Exercise	participant	who	watches	selected
segments	as	they	unfold	while	remaining
separate	from	role	player	activities	[DRAFT
22300:	2017--	observer	participant	(3.163)	who
witnesses	the	exercise	(3.83)	while	remaining
separate	from	exercise	activities	Note	1	to	entry:
Observers	may	be	part	of	the	evaluation	(3.81)
process	(3.180).]

ISO
22300:2012(en)
Societal
security	—
Terminology,
2.4.5	[addition
in	DRAFT
2017]

Portfolio	of
Solutions
(PoS)

A	database	driven	web	site	that	documents	the
available	Crisis	Management	solutions.	The	PoS
includes	information	on	the	experiences	with	a
solution	(i.e.	results	and	outcomes	of	Trials),	the
needs	it	addresses,	the	type	of	practitioner
organisations	that	have	used	it,	the	regulatory
conditions	that	apply,	societal	impact
consideration,	a	glossary,	and	the	design	of	the
Trials.

DoW

Annex	1

48



List	of	Figures
1.	 PTME	paradigm	applied	to	DRIVER+.

2.	 CIS	and	CSS.

3.	 Test-bed	reference	implementation.

4.	 Test-bed	environment.

5.	 Scope	of	the	test-bed.

6.	 Explanation	of	the	Test-bed	components.

7.	 Admin	tool.

8.	 JEMM	exercise	script	example.

9.	 Exonaut	timeline	example.

10.	 Observer	Support	Tool:	Left,	an	overview	of	available	observation	templates.	Right,	one
of	the	observation	templates	is	selected.

11.	 Test-bed	composer's	home	page.

12.	 Test-bed	composer:	Selecting	a	solution.

13.	 Test-bed	composer:	Downloading	the	docker-compose.yml	file.

14.	 Screenshot	of	Landoop's	Kafka	topics	UI,	which	is	part	of	our	test-bed.

15.	 Screenshot	of	Landoop's	AVRO	schema	registry,	which	is	part	of	our	test-bed.

16.	 Screenshot	displaying	the	Kafka-replay	service's	Swagger	interface.

17.	 State	diagram	of	the	time	service.

List	of	Figures

49


	About
	Executive summary
	1. Introduction
	2. Test-bed description
	3. Test-bed for Trial owners
	4. Test-bed for developers & sysops
	5. Test-bed design
	Acronyms
	Annex 1
	List of Figures

