
ITEC 2019

ITEC Extended Abstract Template Presentation

An interoperability Framework for Trials and Exercises

Martijn Hendriks2, Erik Vullings1, Steven van Campen2, Pieter Hameete1
1TNO, The Hague, The Netherlands

2XVR Simulation, Delft, The Netherlands

Abstract —In the Crisis Management (CM) domain, there is a need for quickly setting up a trial or exercise to test or

train new or existing CM solutions and procedures. The EU-funded DRIVER+ project developed an open source cloud-

based simulation framework, which provides a quick and easy way to connect simulators and (C2-like) solutions in

such a way that they can efficiently exchange information between each other, and between simulators and solutions.

It has already been used successfully in three CM trials, and in several Military battle labs proof-of-concepts.

1 Introduction and Background

DRIVER+ [1] is an EU-funded project that develops a

pan-European test-bed for crisis management (CM),

offering CM experts a Concept Development &

Experimentation (CD&E) environment for testing new

CM solutions and/or processes. Its main outcomes are a

practical methodology to trial solutions, the so-called Trial

Guidance Methodology, a portfolio of solutions (PoS), and

an open source interoperability framework, which will be

the focus of this paper.

2 Technical Approach and Methods

A trial typically starts with a CM organisation having a

problem: with an incident such as earthquakes, flooding,

or forest fires, inadequate situational awareness, or

procedural aspects like resource management. To address

the problem, the DRIVER+ Portfolio of Solutions [2],

basically a smart catalogue of C2-like solutions and

processes, can be searched, and solutions claiming to solve

his problem identified. Still, they need to select one or

more solutions that fits best within their

organisation/region, so a trial is devised using the Trial

Guidance Methodology [3].

An important part of any trial is to setup the technical

infrastructure: on the one hand, existing C2 systems and

new solutions need to be connected in such a way that they

can exchange information via the so-called Common

Information Space (CIS), see Fig. 1. On the other hand,

simulators are needed to create a fictitious incident, so the

solutions can be tested and experienced in a virtual, albeit

sufficiently realistic, background. As one simulator is

often not enough to cover all aspects of the fictitious

incident, there also needs to be a space where simulators

can exchange information with each other: The Common

Simulation Space (CSS). In the CSS, a flooding simulator

can focus on simulating a flooding, and a traffic simulator

makes sure that the vehicles do not drive through the

flooded area. Finally, there is the need for a gateway

connecting the CIS and CSS, so information about the

simulated fictitious incident can be offered to the CIS, and

optionally filtered. For example, a flooding simulator can

simulate a flooding, but depending on the level of

situational awareness, the C2 system may only ‘see’ a part

of the actual flooding. The gateway also offers solutions to

request changes to the simulation, e.g. a C2 system

dispatching a request for a simulated ambulance to move

to a location.

SOLUTIONS

SIMULATORS

Common Information Space (CIS)

Adapters

Common Simulation Space (CSS)

Adapters

Gateways

Fig. 1. The CIS connects solutions, the CSS connects

simulators, and information is exchanged via gateways.

3 Technical Requirements

In order to fully comply to the demands and wishes of such

a technical infrastructure to be deployed in the CM

domain, several technical requirements were defined to

steer the implementation of this framework (more detailed

in [4] and [5]):

- The primary focus of the framework and its tools

should be the CM operations, protocols and software

applications. Some data exchange standards do exist,

such as the Common Alerting Protocol (CAP) [6] and

the Emergency Data Exchange Language (EDXL) [7],

but they do not offer a complete end-to-end solution,

and are sporadically implemented at best.

- The framework must be able to connect (CM)

simulators to create realistic fictitious incidents, and

should provide a gateway to exchange data to and

from solutions and simulators.

- For both solution and simulation providers, the

framework must be understandable and provide easy

connectivity for their applications.

- The framework should contain tools focused on the

support for running trials and exercises. The need to

monitor and control the trial during execution and the

need to save all exchanged data for after-action review

and analysis needs to be addressed.

- For sustainability reasons, all code of the framework

and its tools should be freely available and open-

source (MIT license).

ITEC 2019

ITEC Extended Abstract Template Presentation

4 Technical Design

The Common Simulation Space could be implemented

using one of the already available standards like High-

Level Architecture (HLA) [8], which is well-equipped to

solve the problem of information exchange in a simulation.

However, within DRIVER+, another approach was taken,

since:

- HLA tooling is expensive for CM organisations, there

is no real open source alternative, and the community

of practitioners is small.

- HLA tooling typically only offers code generators for

Java, C++ and C#, which excludes many simulators.

- HLA requires a steep learning curve, and although

some work has been done in creating a CM Federation

Object Model (FOM), no mature standards are

available.

- The CM domain has a slightly different set of

requirements and communication standards than the

domain HLA is currently predominantly used in.

- Few, if any, CM simulators currently support HLA.

The CSS as well as the CIS, are based on the open

source streaming platform, Apache Kafka [9], which

provides the following benefits:

- It is open-source, widely used, and supported by the

Apache organisation, and can run easily in the cloud

using Docker.

- Adapters to connect to Kafka are available in many

programming languages, and in DRIVER+, existing

connectors in Java, C#, JavaScript, Python and REST

were adapted to provide additional Modelling &

Simulation functionality.

- Exchange of messages is based on AVRO schemas

[10], providing precise information on the syntax of

each message.

- Message throughput is high [11] and, using clustering,

can be made even higher.

For combining CM simulators and HLA RPR-FOM

based military simulators, a two-way gateway in Java was

created for the real-time exchange of RPR-FOM entity

state messages (name, marking and position of entities)

with the CSS as AVRO messages, and vice versa.

Common Information Space (CIS)

Apache Kafka

Gateways

HLA

Fig. 2. The Common Simulation Space can partially be

implemented using Apache Kafka, partially using HLA RPR-

FOM.

The chosen implementation also has some limitations

that in particular developers need to be aware of:

- Time synchronization between simulators and

solutions is based on a simple time-driven

implementation. Time messages are sent across a

Kafka topic, and there is no concept of event handling

or waiting for a lagging system. This is acceptable for

typical CM simulations and exercises which are

running not much faster than real-time, but not

suitable if you intend to use monte-carlo simulations.

Similarly, our framework is not suitable for high-

accuracy simulations, e.g. as needed in the domain of

air-defence simulation.

- Ownership: There is no concept of ownership, i.e. one

simulator taking over the ownership of an entity

created by another simulator.

5 Additional Tooling

Exchanging information is only part of the framework’s

functionality: DRIVER+ also offers tools for observers,

after-action review, scenario management, a time service,

data services, such as cloud storage or a twitter gateway,

and debug tools, such as the message injector and replay

service. All these tools are available as Docker containers

and can easily be combined in a Docker environment, and

hosted in the cloud via container orchestration tools. (see

Figure 3).

DRIVER+ also created a Moodle-based e-learning

module to educate CM professionals as well as software

developers and system administrators on what it takes to

setup a trial and to connect their solution or simulator to

the interoperability framework.

Test-bed ref. imp.

Admin
Tool

SOLUTIONS

SIMULATORS

Common Information Space

Adapters

Common Simulation Space

Adapters

Observer
tool

After Action
Review

Gateways

Scenario
manager

Time
service

Validation service

Replay
service

Message
injector

Data
services

Docker environment

Fig. 3. Complete overview of the DRIVER+ interoperability

framework. An animation is available at [12].

6 Lessons Learned & Conclusions

Based on experience gained so far in several trials:

- The framework enriches the user experience: for

example, a 3D first-person simulator can now be

connected to a C2 platform or an ambulance

dispatcher.

- It allows to connect previously disconnected

operational systems, e.g. the Dutch Defence C2

platform ELIAS was connected to the Dutch C2 CM

platform, LCMS

- Creating an adapter is straightforward: using one of

the existing open source Kafka connectors as the

basis, a limited set of functionalities needs to be

added, such as a heartbeat signal, processing time

messages, and security.

- It is easy to connect solutions: it involves converting

AVRO-based messages to and from internal messages

in your solution.

ITEC 2019

ITEC Extended Abstract Template Presentation

- For simulators, messages need to be converted to

AVRO, but in their case, time management is much

more of an issue. Also, they often need to be more

reactive to external requests.

Acknowledgements

This project has received funding from the European

Union’s Seventh Framework Programme for research,

technological development and demonstration under

grant agreement n° 607798. The information and views

set out in this publication are those of the author(s) and

do not necessarily reflect the official opinion of the

European Union.

References

[1] Project DRIVER+, https://www.driver-project.eu.

[2] DRIVER+ Portfolio of Solutions, http://pos.driver-

project.eu/

[3] DRIVER+ Trial Guidance Methodology,

https://www.driver-project.eu/trial-guidance-

methodology/

[4] DRIVER+ Test-bed specification,

https://driver-eu.gitbook.io/test-bed-specification

[5] DRIVER+ Test-bed design,

https://driver-eu.github.io/test-bed-design

[6] Common Alerting Protocol (CAP), http://docs.oasis-

open.org/emergency/cap/v1.2/CAP-v1.2-os.html

[7] Emergency Data Exchange Language (EDXL),

http://docs.oasis-open.org/emergency/edxl-de/v2.0/edxl-

de-v2.0.html

[8] HLA (High-Level Architecture) simulation standard,
https://en.wikipedia.org/wiki/High-level_architecture

[9] Apache Kafka, https://kafka.apache.org.

[10] AVRO standard, http://avro.apache.org.

[11] J. Kreps - “Benchmarking Apache Kafka”, 2014,

https://engineering.linkedin.com/kafka/benchmarking-

apache-kafka-2-million-writes-second-three-cheap-

machines

[12] DRIVER+ Test-bed - how can the Test-bed help

Crisis Management practitioners?,
https://www.youtube.com/watch?time_continue=1&v=si

0YEQKNCkM

Biographies

Steven van Campen is a senior product designer and

medical incident command instructor at XVR Simulation.

He holds an MSc. in Aerospace Engineering and

Industrial Design Engineering from Delft University of

Technology (NL). He has interests in education and crisis

management, and involved in creation of simulation

centres and innovations in incident command training.

Pieter Hameete is a Junior Scientist Innovator at TNO’s

Modelling, Simulation & Gaming department. He holds

an MSc. In Computer Science from Delft University of

Technology (NL). His work involves distributed

(simulation) systems, and data-intensive applications.

Martijn Hendriks is a senior developer at XVR

Simulation. He holds an MSc. in Media & Knowledge

Engineering from Delft University of Technology (NL).

His main focus lies in integrating external applications

within the XVR platform architecture.

Erik Vullings is a Senior System Integrator at TNO’s

Modelling, Simulation & Gaming department. He

previously worked as an R&D programme manager in

Australia and as systems engineer for Philips. He holds a

PhD. in Electrical Eng. and an MSc. in Mechanical Eng.

from Delft University of Technology (NL).

https://www.driver-project.eu/
http://pos.driver-project.eu/
http://pos.driver-project.eu/
https://www.driver-project.eu/trial-guidance-methodology/
https://www.driver-project.eu/trial-guidance-methodology/
https://driver-eu.gitbook.io/test-bed-specification
https://driver-eu.github.io/test-bed-design
http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html
http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html
http://docs.oasis-open.org/emergency/edxl-de/v2.0/edxl-de-v2.0.html
http://docs.oasis-open.org/emergency/edxl-de/v2.0/edxl-de-v2.0.html
https://en.wikipedia.org/wiki/High-level_architecture
https://kafka.apache.org/
http://avro.apache.org/
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

